Machine Learning Engineer

TEKsystems
London
1 year ago
Applications closed

Related Jobs

View all jobs

Junior Data Scientist

Junior Data Scientist

Junior Data Scientist

Data Scientist & ML Engineer - UK (Master’s Required)

Junior Data Scientist

Data Scientist & ML Engineer - UK (Master’s Required)

Job Title: Machine Learning Engineer

Job Description

The Solutions & Technology team is seeking a skilled Machine Learning Engineer through the Magnit program in the UK. This engineer will report directly to the Engineering Manager and will be responsible for designing and implementing machine learning models and solutions.

Responsibilities

Design and develop machine learning models and algorithms. Collaborate with data scientists and engineers to integrate machine learning solutions. Optimise and refine models for performance and scalability. Utilise Python and SQL for data analysis and model development. Ensure the accuracy and efficiency of data processing and machine learning workflows.

Essential Skills

Proficiency in Python programming. Experience with machine learning techniques and algorithms. Strong knowledge of data analysis and data processing. Familiarity with SQL for database management and queries. Ability to design, implement, and optimise machine learning models.

Additional Skills & Qualifications

Experience working in a team environment. Strong problem-solving and analytical skills. Excellent communication and collaboration abilities.

Why Work Here?

Join a dynamic and innovative team where you will have the opportunity to work on cutting-edge machine learning projects. Enjoy a supportive work environment that values collaboration and professional growth.

Work Environment

The work environment is fast-paced and collaborative, providing access to advanced technologies and tools. You will have the flexibility to work on challenging projects and contribute to the development of innovative solutions. The dress code is casual, and the team promotes a healthy work-life balance.

Job Type & Location

This is a Contract position based out of The London office.

Location

London, UK

Rate/Salary

- GBP Daily

Trading as TEKsystems. Allegis Group Limited, Maxis 2, Western Road, Bracknell, RG12 1RT, United Kingdom. No. 2876353. Allegis Group Limited operates as an Employment Business and Employment Agency as set out in the Conduct of Employment Agencies and Employment Businesses Regulations 2003. TEKsystems is a company within the Allegis Group network of companies (collectively referred to as "Allegis Group"). Aerotek, Aston Carter, EASi, Talentis Solutions, TEKsystems, Stamford Consultants and The Stamford Group are Allegis Group brands.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write a Data Science Job Ad That Attracts the Right People

Data science plays a critical role in how organisations across the UK make decisions, build products and gain competitive advantage. From forecasting and personalisation to risk modelling and experimentation, data scientists help translate data into insight and action. Yet many employers struggle to attract the right data science candidates. Job adverts often generate high volumes of applications, but few applicants have the mix of analytical skill, business understanding and communication ability the role actually requires. At the same time, experienced data scientists skip over adverts that feel vague, inflated or misaligned with real data science work. In most cases, the issue is not a lack of talent — it is the quality and clarity of the job advert. Data scientists are analytical, sceptical of hype and highly selective. A poorly written job ad signals unclear expectations and immature data practices. A well-written one signals credibility, focus and serious intent. This guide explains how to write a data science job ad that attracts the right people, improves applicant quality and positions your organisation as a strong data employer.

Maths for Data Science Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are applying for data science jobs in the UK, the maths can feel like a moving target. Job descriptions say “strong statistical knowledge” or “solid ML fundamentals” but they rarely tell you which topics you will actually use day to day. Here’s the truth: most UK data science roles do not require advanced pure maths. What they do require is confidence with a tight set of practical topics that come up repeatedly in modelling, experimentation, forecasting, evaluation, stakeholder comms & decision-making. This guide focuses on the only maths most data scientists keep using: Statistics for decision making (confidence intervals, hypothesis tests, power, uncertainty) Probability for real-world data (base rates, noise, sampling, Bayesian intuition) Linear algebra essentials (vectors, matrices, projections, PCA intuition) Calculus & gradients (enough to understand optimisation & backprop) Optimisation & model evaluation (loss functions, cross-validation, metrics, thresholds) You’ll also get a 6-week plan, portfolio projects & a resources section you can follow without getting pulled into unnecessary theory.

Neurodiversity in Data Science Careers: Turning Different Thinking into a Superpower

Data science is all about turning messy, real-world information into decisions, products & insights. It sits at the crossroads of maths, coding, business & communication – which means it needs people who see patterns, ask unusual questions & challenge assumptions. That makes data science a natural fit for many neurodivergent people, including those with ADHD, autism & dyslexia. If you’re neurodivergent & thinking about a data science career, you might have heard comments like “you’re too distracted for complex analysis”, “too literal for stakeholder work” or “too disorganised for large projects”. In reality, the same traits that can make traditional environments difficult often line up beautifully with data science work. This guide is written for data science job seekers in the UK. We’ll explore: What neurodiversity means in a data science context How ADHD, autism & dyslexia strengths map to common data science roles Practical workplace adjustments you can request under UK law How to talk about your neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in data science – & how to turn “different thinking” into a real career advantage.