Lila Sciences, Inc. | Cambridge, MA Machine Learning Operations Engineer

Flagship Pioneering
Cambridge
3 weeks ago
Create job alert

Lila Sciences is a privately held, early-stage technology company pioneering the application of artificial intelligence to transform every aspect of the scientific method. Lila is backed by Flagship Pioneering, which brings the courage, long-term vision, and resources needed to realize unreasonable results. Join our mission-driven team and contribute to the future of science.

Our Life Sciences effort is leveraging AI and high-throughput automation for valuable therapeutic discovery and development across biological modalities. And our Physical Sciences effort is developing a novel AI and data-driven approach to materials discovery and development to accelerate the transition to a sustainable economy.

At Lila, we are uniquely cross-functional and collaborative. We are actively reimagining the way teams work together and communicate. Therefore, we seek individuals with an inclusive mindset and a diversity of thought. Our teams thrive in unstructured and creative environments. All voices are heard because we know that experience comes in many forms, skills are transferable, and passion goes a long way.

If this sounds like an environment you’d love to work in, even if you only have some of the experience listed below, please apply.

The Role

We are seeking a mid-levelMachine Learning Operations Engineerto join our growing team. In this role, you will focus on unifying data management at Lila by building and maintaining high performance and robust data pipelines to support a variety of machine learning use-cases. You will work closely with both LLM researchers and Applied AI Engineers to ensure the seamless integration of cutting-edge LLM research with scalable, production-ready systems for life science and physical science automation.

Responsibilities:

  • Design and implement high-performance data processing infrastructure for large language model training
  • Collaborate with researchers to implement novel data processing pipelines
  • Develop an easy-to-use, secure, and robust developer experience for researchers and engineers
  • Contribute to the MLOps best practices at Lila Sciences and write technical documentation for staff

Qualifications:

  • 3+ years of experience in software engineering, with a focus in data engineering or DevOps
  • Demonstrated experience deploying and maintaining machine learning models in production
  • Proficiency with Kubernetes, Docker, and Cloud (AWS Preferred)
  • Proficiency with CI/CD tools and Frameworks (GitHub Actions preferred)
  • Strong skills with Scripting languages (e.g. Python, Bash), VCS (git), and Linux
  • Proven experience in cross-functional teams and able to communicate effectively about technical and operational challenges.

Preferred Qualifications:

  • Proficiency with scalable data frameworks (Spark, Kafka, Flink)
  • Proven Expertise with Infrastructure as Code and Cloud best practices
  • Proficiency with monitoring and logging tools (e.g., Prometheus, Grafana)

Working at Lila Sciences, you would have access to advanced technology in the areas of:

  • AI experimental design and simulation
  • Automated liquid handling and instrumentation

Location:

Cambridge, MA preferred; open to remote.

More About Flagship Pioneering

Flagship Pioneering is a biotechnology company that invents and builds platform companies, each with the potential for multiple products that transform human health or sustainability. Since its launch in 2000, Flagship has originated and fostered more than 100 scientific ventures, resulting in more than $90 billion in aggregate value. Many of the companies Flagship has founded have addressed humanity’s most urgent challenges: vaccinating billions of people against COVID-19, curing intractable diseases, improving human health, preempting illness, and feeding the world by improving the resiliency and sustainability of agriculture.

Flagship has been recognized twice on FORTUNE’s “Change the World” list, an annual ranking of companies that have made a positive social and environmental impact through activities that are part of their core business strategies, and has been twice named to Fast Company’s annual list of the World’s Most Innovative Companies. Learn more about Flagship atwww.flagshippioneering.com.

Flagship Pioneering and our ecosystem companies arecommitted to equal employment opportunityregardless of race, color, ancestry, religion, sex, national origin, sexual orientation, age, citizenship, marital status, disability, gender identity or Veteran status.

At Flagship, we recognize there is no perfect candidate. If you have some of the experience listed above but not all, please apply anyway. Experience comes in many forms, skills are transferable, and passion goes a long way. We are dedicated to building diverse and inclusive teams and look forward to learning more about your unique background.

#J-18808-Ljbffr

Related Jobs

View all jobs

Machine Learning Operations Engineer

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Tips for Staying Inspired: How Data Science Pros Fuel Creativity and Innovation

Data science sits at the dynamic intersection of statistics, computer science, and domain expertise, driving powerful innovations in industries ranging from healthcare to finance, and from retail to robotics. Yet, the daily reality for many data scientists can be a far cry from starry-eyed talk of AI and machine learning transformations. Instead, it often involves endless data wrangling, model tuning, and scrutiny over metrics. Maintaining a sense of creativity in this environment can be an uphill battle. So, how do successful data scientists continue to dream big and innovate, even when dealing with the nitty-gritty of data pipelines, debugging code, or explaining results to stakeholders? Below, we outline ten practical strategies to help data analysts, machine learning engineers, and research scientists stay inspired and push their ideas further. Whether you’re just starting out or looking to reinvigorate a long-standing career, these pointers can help you find fresh sparks of motivation.

Top 10 Data Science Career Myths Debunked: Key Facts for Aspiring Professionals

Data science has become one of the most sought-after fields in the tech world, promising attractive salaries, cutting-edge projects, and the opportunity to shape decision-making in virtually every industry. From e-commerce recommendation engines to AI-powered medical diagnostics, data scientists are the force behind innovations that drive productivity and improve people’s lives. Yet, despite the demand and glamour often associated with this discipline, data science is also shrouded in misconceptions. Some believe you need a PhD in mathematics or statistics; others assume data science is exclusively about machine learning or coding. At DataScience-Jobs.co.uk, we’ve encountered a wide array of myths that can discourage talented individuals or mislead those exploring a data science career. This article aims to bust the top 10 data science career myths—providing clarity on what data scientists actually do and illuminating the true diversity and inclusiveness of this exciting field. Whether you’re a recent graduate, a professional looking to pivot, or simply curious about data science, read on to discover the reality behind the myths.

Global vs. Local: Comparing the UK Data Science Job Market to International Landscapes

How to evaluate salaries, opportunities, and work culture in data science across the UK, the US, Europe, and Asia Data science has proven to be more than a passing trend; it is now a foundational pillar of modern decision-making in virtually every industry—from healthcare and finance to retail and entertainment. As the volume of data grows exponentially, organisations urgently need professionals who can transform raw information into actionable insights. This high demand has sparked a wave of new opportunities for data scientists worldwide. In this article, we’ll compare the UK data science job market to those in the United States, Europe, and Asia. We’ll explore hiring trends, salary benchmarks, and cultural nuances to help you decide whether to focus your career locally or consider opportunities overseas or in fully remote roles. Whether you’re a fresh graduate looking for your first data science position, an experienced data professional pivoting from analytics, or a software engineer eager to break into machine learning, understanding the global data science landscape can be a game-changer. By the end of this overview, you’ll be better equipped to navigate the expanding world of data science—knowing which skills and certifications matter most, how salaries differ between regions, and what to expect from distinct work cultures. Let’s dive in.