Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Lead/Senior Data Scientist

EPAM Systems
London
1 week ago
Create job alert

Overview

Are you passionate about Data Science and Artificial Intelligence? Do you thrive at the intersection of technical innovation and business strategy, finding satisfaction in translating complex ideas into scalable client-centric solutions? If so, we have an exciting opportunity for you.

As a Senior/Lead Data Scientist, you will play a pivotal role in driving the development and deployment of state-of-the-art AI models and data-driven solutions that deliver measurable impact. You'll move beyond building prototypes to deploying robust production-grade systems. We are looking for an experienced applied data scientist who can combine exceptional technical skills with strategic foresight and the ability to partner effectively with business and technical teams. You’ll have proven expertise in managing project timelines and delivering results that align with organizational goals while fostering collaboration and innovation within the team.

Responsibilities

  • Build innovative machine learning and AI solutions designed to address a variety of business challenges and opportunities
  • Continuously tune and refine models for improved performance, accuracy, scalability and reliability across multiple use cases
  • Establish frameworks to assess accuracy, performance metrics and data fitness to ensure models meet real-world demands
  • Lead efforts to standardize model evaluation, coding practices and data science workflows to uphold high-quality production-level code
  • Work closely with business stakeholders to define project goals and technical requirements while partnering with data engineering teams to streamline development roadmaps
  • Bring cutting-edge techniques like NLP, Large Language Models (LLMs) and Generative AI (GenAI) to solve real-world problems with demonstrable results

Requirements

  • Extensive experience applying data science methods including knowledge of NLP, Large Language Models (LLMs) and Generative AI technologies
  • Expertise in object-oriented programming with deep knowledge of critical machine learning libraries (e.g. TensorFlow, PyTorch, scikit-learn) and best practices for efficient coding
  • A solid grasp of probability, inference and robust data analysis techniques to inform model selection, development and accurate interpretation of outputs
  • Proven ability to take AI models from ideation through deployment ensuring scalability, reliability and alignment with business objectives
  • Hands-on experience with cloud platforms (Azure and/or AWS) and deployment pipelines to deliver scalable production-ready solutions
  • Skilled at establishing, maintaining and advocacy for clean, maintainable and well-documented code across projects
  • Ability to work effectively with both technical and non-technical stakeholders bridging the gap between business needs and development execution
  • Adept at translating complex technical ideas into clear actionable insights for teammates, executives and clients

We offer

  • EPAM Employee Stock Purchase Plan (ESPP)
  • Protection benefits including life assurance, income protection and critical illness cover
  • Private medical insurance and dental care
  • Employee Assistance Program
  • Cyclescheme, Techscheme and season ticket loans
  • Various perks such as free Wednesday lunch in-office, on-site massages and regular social events
  • Learning and development opportunities including in-house training and coaching, professional certifications, over 22,000 courses on LinkedIn Learning Solutions and much more
  • If otherwise eligible, participation in the discretionary annual bonus program
  • If otherwise eligible and hired into a qualifying level, participation in the discretionary Long-Term Incentive (LTI) Program
  • All benefits and perks are subject to certain eligibility requirements

Details

  • Seniority level: Mid-Senior level
  • Employment type: Full-time
  • Job function: Information Technology, Engineering, and Research
  • Industries: Software Development and IT Services and IT Consulting


#J-18808-Ljbffr

Related Jobs

View all jobs

Senior Data Scientist

Senior Data Scientist

LLM / NLP Data Scientist Lead - Vice President - ESG

LLM / NLP Data Scientist Lead - Vice President - ESG

Senior Data Scientist

Senior Data Scientist - Computer Vision

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Why Data Science Careers in the UK Are Becoming More Multidisciplinary

Data science once meant advanced statistics, machine learning models and coding in Python or R. In the UK today, it has become one of the most in-demand professions across sectors — from healthcare to finance, retail to government. But as the field matures, employers now expect more than technical modelling skills. Modern data science is multidisciplinary. It requires not just coding and algorithms, but also legal knowledge, ethical reasoning, psychological insight, linguistic clarity and human-centred design. Data scientists are expected to interpret, communicate and apply data responsibly, with awareness of law, human behaviour and accessibility. In this article, we’ll explore why data science careers in the UK are becoming more multidisciplinary, how these five disciplines intersect with data science, and what job-seekers & employers need to know to succeed in this transformed field.

Data Science Team Structures Explained: Who Does What in a Modern Data Science Department

Data science is one of the most in-demand, dynamic, and multidisciplinary areas in the UK tech and business landscape. Organisations from finance, retail, health, government, and beyond are using data to drive decisions, automate processes, personalise services, predict trends, detect fraud, and more. To do that well, companies don’t just need good data scientists; they need teams with clearly defined roles, responsibilities, workflows, collaboration, and governance. If you're aiming for a role in data science or recruiting for one, understanding the structure of a data science department—and who does what—can make all the difference. This article breaks down the key roles, how they interact across the lifecycle of a data science project, what skills and qualifications are typical in the UK, expected salary ranges, challenges, trends, and how to build or grow an effective team.

Why the UK Could Be the World’s Next Data Science Jobs Hub

Data science is arguably the most transformative technological field of the 21st century. From powering artificial intelligence algorithms to enabling complex business decisions, data science is essential across sectors. As organisations leverage data more rapidly—from retailers predicting customer behaviour to health providers diagnosing conditions—demand for proficiency in data science continues to surge. The United Kingdom is particularly well-positioned to become a global data science jobs hub. With world-class universities, a strong tech sector, growing AI infrastructure, and supportive policy environments, the UK is poised for growth. This article delves into why the UK could emerge as a leading destination for data science careers, explores the job market’s current state, outlines future opportunities, highlights challenges, and charts what must happen to realise this vision.