Lead ML Researcher

Top Remote Talent
Manchester
1 year ago
Applications closed

Related Jobs

View all jobs

Principal Data Scientist and Machine Learning Researcher

Head of Data Science

Senior Data Scientist

Lead Data Architect

Lead Data Scientist

Lead Data Engineer - Databricks


A software development company is looking for a talented, long-term Lead ML Researcher. 

The company is a team of experts providing analytical services to healthcare clients. You will join an international team of first class professionals who are passionate to create products that improve quality of medical services. 

We have the highest expectations in the industry regarding your ability to deliver high quality, performant, scalable, clean, and tested software. 

Responsibilities:

  • Strong analytical skills (good statistics is a must);

• Team Leadership and Development: Lead a small team of 2-4 data scientists focused on solving challenging problems using tabular data with large, feature-rich datasets. Create a collaborative and productive environment, support team members’ technical and professional growth;

• Technical Task Planning and Prioritization: Work with the Product Manager to understand business goals, set task priorities, and manage team resources effectively. Recommend task prioritization strategies to increase product impact and efficiency;

• Technical Oversight and Quality Assurance: Lead the team through all stages of model development, from design to deployment, ensuring best practices in code quality, documentation, and reproducibility. Set clear, repeatable documentation standards to support scalability and knowledge sharing. Implement systems to monitor model performance and keep ML services stable;

• Cross-Functional Collaboration: Work closely with other teams (e.g., Machine Learning Engineers, MLOps, UI) to ensure ML models integrate smoothly with the overall system and align with other technical projects.

Requirements:
• 5+ years in machine learning with hands-on model development experience;
• 2+ years in a technical leadership role;
• Practical experience with Git, Airflow and MLflow (or similar tools);
• Strong Python skills with experience using popular ML libraries and tools (sklearn, CatBoost, optuna, etc);

•Experience with cloud platforms (AWS, GCP, Azure), especially their ML and data engineering services;

• Advanced SQL skills and experience building/managing data pipelines with Airflow or similar tools;
• Understanding of MLOps practices, including CI/CD for ML;
• English level B2 or higher. 

Preferred Qualifications (Optional):
• Experience in healthcare or medical insurance projects;
• Experience with Google Cloud Platform (GCP). 

Benefits:

  • Flexible working hours; 
  • Remote work; 
  • Interesting projects to work on; 
  • Paid vacations.

#Li - remote

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many Data Science Tools Do You Need to Know to Get a Data Science Job?

If you’re trying to break into data science — or progress your career — it can feel like you are drowning in names: Python, R, TensorFlow, PyTorch, SQL, Spark, AWS, Scikit-learn, Jupyter, Tableau, Power BI…the list just keeps going. With every job advert listing a different combination of tools, many applicants fall into a trap: they try to learn everything. The result? Long tool lists that sound impressive — but little depth to back them up. Here’s the straight-talk version most hiring managers won’t explicitly tell you: 👉 You don’t need to know every data science tool to get hired. 👉 You need to know the right ones — deeply — and know how to use them to solve real problems. Tools matter, but only in service of outcomes. So how many data science tools do you actually need to know to get a job? For most job seekers, the answer is not “27” — it’s more like 8–12, thoughtfully chosen and well understood. This guide explains what employers really value, which tools are core, which are role-specific, and how to focus your toolbox so your CV and interviews shine.

What Hiring Managers Look for First in Data Science Job Applications (UK Guide)

If you’re applying for data science roles in the UK, it’s crucial to understand what hiring managers focus on before they dive into your full CV. In competitive markets, recruiters and hiring managers often make their first decisions in the first 10–20 seconds of scanning an application — and in data science, there are specific signals they look for first. Data science isn’t just about coding or statistics — it’s about producing insights, shipping models, collaborating with teams, and solving real business problems. This guide helps you understand exactly what hiring managers look for first in data science applications — and how to structure your CV, portfolio and cover letter so you leap to the top of the shortlist.

The Skills Gap in Data Science Jobs: What Universities Aren’t Teaching

Data science has become one of the most visible and sought-after careers in the UK technology market. From financial services and retail to healthcare, media, government and sport, organisations increasingly rely on data scientists to extract insight, guide decisions and build predictive models. Universities have responded quickly. Degrees in data science, analytics and artificial intelligence have expanded rapidly, and many computer science courses now include data-focused pathways. And yet, despite the volume of graduates entering the market, employers across the UK consistently report the same problem: Many data science candidates are not job-ready. Vacancies remain open. Hiring processes drag on. Candidates with impressive academic backgrounds fail interviews or struggle once hired. The issue is not intelligence or effort. It is a persistent skills gap between university education and real-world data science roles. This article explores that gap in depth: what universities teach well, what they often miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in data science.