Lead Machine Learning Engineer

National Grid
Warwick
1 month ago
Applications closed

Related Jobs

View all jobs

Lead Big Data Engineer - Contract

Principal Data Scientist / AI Engineer

Lead Data Scientist - Credit Risk

Associate Director, Data Science and Innovation (Basé à London)

Data Science Manager

Data Science Manager

About The Role

At National Grid, we keep people connected and society moving. But it’s so much more than that. National Grid supplies us with the environment to make it happen. As we generate momentum in the energy transition for all, we don’t plan on leaving any of our customers in the dark. So, join us as a Lead Machine Learning Engineer, and find your superpower.

National Grid is hiring a Lead Machine Learning Engineer for our IT & Digital department. This is a hybrid role that offers flexible working options and will require occasional visits to Warwick or London.

As a Lead Machine Learning Engineer on the National Grid Data Science team, you will develop data pipelines, take data science prototype models to production, fix production bugs, monitor operations, and provision the necessary infrastructure in Azure.

Key Accountabilities

  • Lead Machine Learning projects end-to-end.
  • Develop platform tooling (e.g., internal conda library, CLI tool for project setup, and provisioning infrastructure) for the Data Science team.
  • Work with data scientists to understand their data needs and put together data pipelines to ingest data.
  • Work with data scientists to take data science model prototypes to production.
  • Mentor and train junior team members.
  • Work with internal IT teams (security, Cloud, Global Active Directory, Architecture, Networking, etc.) to advance the team’s projects.
  • Enhance code deployment lifecycle.
  • Improve model monitoring frameworks.
  • Refine project operations documentation.
  • Design, provision, and maintain the cloud infrastructure needed to support Data Engineering, Data Science, Machine Learning Engineers, and Machine Learning Operations.
  • Write high-quality code that has high test coverage.
  • Participate in code reviews to help improve code quality.

Technologies/Tools we use:Python, Azure (Virtual Machines, Azure Web Apps, Cloud Storage, Azure ML), Anaconda packages, Git, GitHub, GitHub Actions, Terraform, SQL, Artifactory, Airflow, Docker, Kubernetes, Linux/Windows VMs.

About You

  • Hands-on industry experience in some combination of Software Engineering, ML Engineering, Data Science, DevOps, and Cloud Infrastructure work.
  • Expertise in Python which includes experience in libraries such as Pandas, scikit-learn. High proficiency in SQL.
  • Knowledge of best practices in software engineering is necessary.
  • Hands-on industry experience in some combination of the following technologies: Python ecosystem, Azure (VMs, Web Apps, Managed Databases), GitHub Actions, Terraform, Packer, Airflow, Docker, Kubernetes, Linux/Windows VM administration, Shell scripting (primary Bash but PowerShell as well).
  • A solid understanding of modern security and networking principles and standards.
  • A foundational knowledge of Data Science is strongly preferred.
  • Bachelor’s or higher degree in Computer Science, Data Science, and/or related quantitative degree is preferred from an accredited institution.

More Information

A salary between £80,000 - £95,000 - dependent on capability. As well as your base salary, you will receive a bonus of up to 15% of your salary for stretch performance and a competitive contributory pension scheme where we will double match your contribution to a maximum company contribution of 12%. You will also have access to a number of flexible benefits such as a share incentive plan, salary sacrifice car and technology schemes, support via employee assistance lines and matched charity giving to name a few.

At National Grid, we work towards the highest standards in everything we do, including how we support, value and develop our people. Our aim is to encourage and support employees to thrive and be the best they can be. We celebrate the difference people can bring into our organisation, and welcome and encourage applicants with diverse experiences and backgrounds, and offer flexible and tailored support, at home and in the office.

Our goal is to drive, develop and operate our business in a way that results in a more inclusive culture. All employment is decided on the basis of qualifications, the innovation from diverse teams & perspectives and business need. We are committed to building a workforce so we can represent the communities we serve and have a working environment in which each individual feels valued, respected, fairly treated, and able to reach their full potential.

#J-18808-Ljbffr

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for Data Science Jobs (With Real GitHub Examples)

Data science is at the forefront of innovation, enabling organisations to turn vast amounts of data into actionable insights. Whether it’s building predictive models, performing exploratory analyses, or designing end-to-end machine learning solutions, data scientists are in high demand across every sector. But how can you stand out in a crowded job market? Alongside a solid CV, a well-curated data science portfolio often makes the difference between getting an interview and getting overlooked. In this comprehensive guide, we’ll explore: Why a data science portfolio is essential for job seekers. Selecting projects that align with your target data science roles. Real GitHub examples showcasing best practices. Actionable project ideas you can build right now. Best ways to present your projects and ensure recruiters can find them easily. By the end, you’ll be equipped to craft a compelling portfolio that proves your skills in a tangible way. And when you’re ready for your next career move, remember to upload your CV on DataScience-Jobs.co.uk so that your newly showcased work can be discovered by employers looking for exactly what you have to offer.

Data Science Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Data science has become one of the most sought‑after fields in technology, leveraging mathematics, statistics, machine learning, and programming to derive valuable insights from data. Organisations across every sector—finance, healthcare, retail, government—rely on data scientists to build predictive models, understand patterns, and shape strategy with data‑driven decisions. If you’re gearing up for a data science interview, expect a well‑rounded evaluation. Beyond statistics and algorithms, many roles also require data wrangling, visualisation, software engineering, and communication skills. Interviewers want to see if you can slice and dice messy datasets, design experiments, and scale ML models to production. In this guide, we’ll explore 30 real coding & system‑design questions commonly posed in data science interviews. You’ll find challenges ranging from algorithmic coding and statistical puzzle‑solving to the architectural side of building data science platforms in real‑world settings. By practising with these questions, you’ll gain the confidence and clarity needed to stand out among competitive candidates. And if you’re actively seeking data science opportunities in the UK, be sure to visit www.datascience-jobs.co.uk. It’s a comprehensive hub featuring junior, mid‑level, and senior data science vacancies—spanning start‑ups to FTSE 100 companies. Let’s dive into what you need to know.

Negotiating Your Data Science Job Offer: Equity, Bonuses & Perks Explained

Data science has rapidly evolved from a niche specialty to a cornerstone of strategic decision-making in virtually every industry—from finance and healthcare to retail, entertainment, and AI research. As a mid‑senior data scientist, you’re not just running predictive models or generating dashboards; you’re shaping business strategy, product innovation, and customer experiences. This level of influence is why employers are increasingly offering compensation packages that go beyond a baseline salary. Yet, many professionals still tend to focus almost exclusively on base pay when negotiating a new role. This can be a costly oversight. Companies vying for data science talent—especially in the UK, where demand often outstrips supply—routinely offer equity, bonuses, flexible work options, and professional development funds in addition to salary. Recognising these opportunities and effectively negotiating them can have a substantial impact on your total earnings and long-term career satisfaction. This guide explores every facet of negotiating a data science job offer—from understanding equity structures and bonus schemes to weighing crucial perks like remote work and ongoing skill development. By the end, you’ll be well-equipped to secure a holistic package aligned with your market value, your life goals, and the tremendous impact you bring to any organisation.