Lead Enterprise Architect, Advanced Analytics

London
2 weeks ago
Create job alert

Job Title: Lead Enterprise Architect - Advanced Analytics
Location: Hybrid - London office in Southwark Bridge 2 days per week
Duration: 3 Months
Clearance: BPSS - Sole UK National
Rate: £650 per day - via Umbrella Only

Job description:
As the Lead Enterprise Architect for our Advanced Analytics business unit, you will lead the development of innovative tools and systems that power data-driven insights and analytics across the organisation. Your leadership will play a pivotal role in driving the next generation of advanced analytics capabilities, ensuring world-class performance, scalability, and efficiency.
This high-visibility role offers a broad scope of responsibility, where you'll influence the direction of our analytics solutions and shape the way we leverage data to optimise business outcomes.
You will work closely with passionate and dedicated colleagues and clients, all committed to driving transformation in the digital media space. Our open, innovative workspace fosters creativity and encourages new ideas, making it easy for everyone to contribute to our shared success.

What You'll Do:

Lead the development and enhancement of advanced analytics tools, focusing on data processing, integration, and optimization in a fast-paced, agile environment.
Manage, mentor, and grow a team of skilled engineers, providing guidance through regular performance reviews and career development opportunities.
Ensure seamless collaboration with cross-functional teams (product, engineering, business) to translate business objectives into actionable technical solutions.
Remove blockers and resolve technical challenges for engineering teams, ensuring smooth execution of analytics initiatives.
Actively participate in code reviews, design discussions, and ensure the implementation of best practices for scalable, future-proof solutions.
Champion agile methodologies, driving teams to deliver high-quality products on time and within budget.
Oversee the full SDLC (planning, design, development, QA, CI/CD, and production support) to ensure timely and efficient delivery of analytics solutions.
Provide second-level support for production systems, ensuring the stability, reliability, and performance of analytics platforms.
Collaborate with architects and other engineering leaders to establish standards, process documentation, and conduct impact assessments.
Manage and resolve escalations effectively, ensuring smooth operations and minimal disruption to project timelines.
What You'll Need:

3+ years of experience in a leadership role with 5+ years of hands-on software engineering experience.
Strong expertise in software architecture, data pipeline design, and scalable analytics systems.
Proven experience with integrating and automating business workflows, including data-driven processes and system integrations.
Familiarity with analytics platforms and tools such as GCP (BigQuery), AWS (Glue, Athena), or Azure Databricks.
Proficiency in Python or .NET, with experience in both or the ability to quickly learn new technologies.
Experience with front-end frameworks (Angular/React) and back-end development (API management, microservices).
Strong knowledge of SQL, data modelling, and database optimization techniques.
Hands-on experience with Docker, cloud platforms (GCP, AWS, Azure), and CI/CD pipelines.
Familiarity with event-driven architectures and building real-time data analytics solutions.
Experience working with large-scale, high-concurrency systems and ensuring high availability.
Previous experience managing globally distributed teams, fostering collaboration across time zones.
Experience in building machine learning solutions and data-driven software is a plus.
You Have a Passion For:

Solving complex data challenges and turning raw data into actionable business insights.
Collaborating with business stakeholders to identify analytics opportunities and optimise business processes.
Innovating and developing solutions that drive data efficiency and performance.
Leading teams with empathy, recognising gaps in knowledge and proactively pursuing development opportunities.
Agile development practices, continuous integration, automation, and delivering high-quality analytics solutions.
Communicating effectively with business users, product managers, and senior leadership to ensure alignment on objectives and technical strategies.
Working in fast-paced, entrepreneurial environments, particularly in data-driven or analytics-heavy industries

Related Jobs

View all jobs

Data Solutions Architect (Azure & MS Fabric)

Data Architect (Hybrid) - Contract (Basé à London)

Lead, Data Scientist (Deep Learning), Peacock Video Streaming Service

(Senior) Lead Data Engineer

Senior Data Science Developer

Data Engineer III, Data & AI, Customer EngagementTechnology...

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Quantum-Enhanced AI in Data Science: Embracing the Next Frontier

Data science has undergone a staggering transformation in the past decade, evolving from a niche academic discipline into a linchpin of modern industry. Across every sector—finance, healthcare, retail, manufacturing—data scientists have become indispensable, leveraging statistical methods and machine learning to turn raw information into actionable insights. Yet as datasets grow ever larger and machine learning models become more computationally expensive, there are genuine questions about how far current methods can be pushed. Enter quantum computing, a nascent but promising technology grounded in the counterintuitive principles of quantum mechanics. Often dismissed just a few years ago as purely experimental, quantum computing is quickly gaining traction as prototypes evolve into cloud-accessible machines. When paired with artificial intelligence—particularly in the realm of data science—the results could be game-changing. From faster model training and complex optimisation to entirely new forms of data analysis, quantum-enhanced AI stands poised to disrupt established practices and create new opportunities. In this article, we will: Explore how data science has reached its current limits in certain areas, and why classical hardware might no longer suffice. Provide an accessible overview of quantum computing concepts and how they differ from classical systems. Examine the potential of quantum-enhanced AI to solve key data science challenges, from data wrangling to advanced machine learning. Highlight real-world applications, emerging job roles, and the skills you need to thrive in this new landscape. Offer actionable steps for data professionals eager to stay ahead of the curve in a rapidly evolving field. Whether you’re a practising data scientist, a student weighing up your future specialisations, or an executive curious about the next technological leap, read on. The quantum era may be closer than you think, and it promises to radically transform the very fabric of data science.

Data Science Jobs at Newly Funded UK Start-ups: Q3 2025 Investment Tracker

Data science has become an indispensable cornerstone of modern business, driving decisions across finance, healthcare, e-commerce, manufacturing, and beyond. As organisations scramble to capitalise on the insights their data can offer, data scientists and machine learning (ML) experts find themselves in ever-higher demand. In the UK, which has cultivated a robust ecosystem of tech innovation and academic excellence, data-driven start-ups continue to blossom—fuelled by venture capital, government grants, and a vibrant talent pool. In this Q3 2025 Investment Tracker, we delve into the newly funded UK start-ups making waves in data science. Beyond celebrating their funding milestones, we’ll explore the job opportunities these investments have created for aspiring and seasoned data scientists alike. Whether you’re interested in advanced analytics, NLP (Natural Language Processing), computer vision, or MLOps, these start-ups might just offer the career leap you’ve been waiting for.

Portfolio Projects That Get You Hired for Data Science Jobs (With Real GitHub Examples)

Data science is at the forefront of innovation, enabling organisations to turn vast amounts of data into actionable insights. Whether it’s building predictive models, performing exploratory analyses, or designing end-to-end machine learning solutions, data scientists are in high demand across every sector. But how can you stand out in a crowded job market? Alongside a solid CV, a well-curated data science portfolio often makes the difference between getting an interview and getting overlooked. In this comprehensive guide, we’ll explore: Why a data science portfolio is essential for job seekers. Selecting projects that align with your target data science roles. Real GitHub examples showcasing best practices. Actionable project ideas you can build right now. Best ways to present your projects and ensure recruiters can find them easily. By the end, you’ll be equipped to craft a compelling portfolio that proves your skills in a tangible way. And when you’re ready for your next career move, remember to upload your CV on DataScience-Jobs.co.uk so that your newly showcased work can be discovered by employers looking for exactly what you have to offer.