Lead Engineer

Intec Select Ltd
Greater London
1 month ago
Applications closed

Related Jobs

View all jobs

Project Lead Engineer

Project Lead Engineer

Data Platform Lead Engineer

Lead Software Engineer - Defence

Lead Data Engineer – Consultancy – Eligible for SC – AWS - London

Lead Data Engineer - Databricks

Lead Engineer

Our long-term trusted partner, a leading financial services corporation, is hiring several Lead Engineers to provide hands-on technical leadership as they continue to move into a digital landscape. The chosen candidate must have experience working within retail/digital banking with exposure to savings/lending products and experience using Java/C#/Python, React, and Azure Cloud Services. Our client is offering a basic salary between £90,000 to £100,000 DOE + 25% bonus with additional exceptional benefits to be based in London two times per week.

Your responsibilities will include:

  • Lead the development and implementation of a modern cloud foundation and data platform that is robust, scalable, fully automated, secure, and can support the growth of the business.
  • Build Scalable Architectures: Design and implement scalable, secure, and high-performing cloud-native solutions, leveraging modern technologies.
  • API Development and Integration: Design and build secure RESTful and GraphQL APIs, ensuring seamless integration with core banking systems (e.g., Mambu) and external services like Open Banking platforms.
  • Data Engineering and Analytics: Work closely with data teams to define robust data pipelines and scalable cloud-based data platforms using tools like Apache Kafka, Snowflake, or Databricks.
  • Monitoring and Performance Tuning: Implement advanced monitoring and observability solutions using tools like Prometheus, Grafana, or Datadog to proactively identify and resolve performance bottlenecks.
  • Code and System Optimisation: Proactively analyse and optimise existing systems for improved performance, scalability, and maintainability.

Core skill set for this position:

  • Strong experience building and scaling Lending or Savings platforms, with a focus on security compliance and performance, is a must.
  • Strong experience working within the financial services industry, preferably retail banking, digital banking, or investment banking industry, is a must-have.
  • Strong experience coding in any of the following languages: Java, C#, Python, and React is a must-have.
  • Proven experience leading a team of cross functional engineers, providing coaching and mentoring whilst being hands-on is a must-have.
  • Strong technical skills and expertise in relevant technologies, such as cloud computing (Azure), microservices architecture, APIs, and data management.
  • Certifications in Cloud Computing (e.g., AWS Certified Solutions Architect, Google Professional Cloud Architect, or Azure Solutions Architect) – Essential.

Benefits:

  • 25% bonus
  • 28 days holiday
  • Holiday Purchase Scheme
  • Occasional travel
  • Health Insurance
  • 13% pension
  • Plus much more.

#J-18808-Ljbffr

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Job-Hunting During Economic Uncertainty: Data Science Edition

Data science has become essential for modern businesses, enabling data-driven decisions that enhance efficiency, profitability, and strategic foresight. From predictive analytics in finance to recommendation engines in retail, data scientists sit at the crossroads of statistics, programming, and domain expertise, building models that translate raw information into tangible insights. Yet, when broader economic forces create uncertainty—through market downturns, shifting investor priorities, or internal budget constraints—data science roles can experience increased scrutiny, competition, and extended hiring cycles. Despite these pressures, data-driven approaches remain crucial to organizations looking to weather challenges and find opportunities in volatile environments. Whether you’re refining advanced machine learning techniques, fine-tuning data pipelines, or collaborating with business stakeholders on dashboards, your skill set is often still in demand. The key is adapting your job search strategy and personal branding to cut through the noise when fewer roles may be available. This article explores: Why economic headwinds affect data science hiring. Actionable strategies to stand out in a tighter job market. Ways to emphasize your technical and soft skills effectively. Techniques to maintain focus and resilience despite potential setbacks. How www.datascience-jobs.co.uk can help you secure the ideal data science position. By combining strategic thinking, polished communications, and adaptability, you can land a fulfilling data science role that leverages your expertise—even if the market feels more demanding.

How to Achieve Work-Life Balance in Data Science Jobs: Realistic Strategies and Mental Health Tips

Data science has quickly emerged as one of the most influential fields in the modern workplace, shaping how businesses make critical decisions and expanding our understanding of everything from consumer behaviour to public health trends. As the global demand for data insights continues to rise, companies of all sizes are seeking professionals who can effectively harness analytics and machine learning to drive innovation. Yet, this promise of limitless opportunity comes with significant challenges. Data scientists often grapple with large volumes of complex data, tight project deadlines, cross-functional collaboration, and constant upskilling. Amid the excitement of discovering actionable insights and developing high-performing models, many wonder if it’s truly possible to maintain a healthy work-life balance. With the field evolving at breakneck speed, the intensity of these roles can leave even the most passionate data professionals drained and questioning how to protect their personal well-being. This article delves into the reality of high-intensity data science jobs, offering practical guidance on setting realistic expectations and preserving mental health. We’ll look at common pitfalls like burnout and perpetual “always learning” pressure, while also highlighting proven strategies for boundary-setting and effective time management. Whether you’re a seasoned data architect, an aspiring machine learning engineer, or somewhere in between, you’ll find actionable tips to help you manage your career trajectory without sacrificing your personal life.

From Research Labs to Real-World Insights: How Academic Researchers Can Thrive in Data Science

Over the past decade, the data science revolution has swept across industries—retailers predicting shopping habits, hospitals personalising patient treatments, and finance companies detecting fraud in near-real time. This surge in data-driven decision-making has created a pressing need for specialists capable of extracting meaningful insights from complex datasets. As a result, PhD holders and academic researchers are uniquely positioned to bring high-calibre analytical skills to the commercial realm. But transitioning from academia to data science can seem daunting: Where do you begin? How do you communicate your research background in industry-friendly terms? What new tools should you learn? This comprehensive guide, explores the paths, challenges, and strategies for academics making the leap into data science. You’ll discover how to leverage your scholarly expertise, adopt a commercial mindset, and build a career that transforms raw data into actionable insights—fostering innovations across every sector of the economy.