Lead Engineer

Intec Select Ltd
Greater London
1 year ago
Applications closed

Related Jobs

View all jobs

Lead DataOps Engineer - Big Data

Lead Data Engineer

Lead Data Engineer (Azure)

Data Engineering Lead: Build Scalable, Secure Pipelines

Ops Lead Engineer – Big Data Platform

Up to £200,000 base + bonuses - Data Engineering Lead

Lead Engineer

Our long-term trusted partner, a leading financial services corporation, is hiring several Lead Engineers to provide hands-on technical leadership as they continue to move into a digital landscape. The chosen candidate must have experience working within retail/digital banking with exposure to savings/lending products and experience using Java/C#/Python, React, and Azure Cloud Services. Our client is offering a basic salary between £90,000 to £100,000 DOE + 25% bonus with additional exceptional benefits to be based in London two times per week.

Your responsibilities will include:

  • Lead the development and implementation of a modern cloud foundation and data platform that is robust, scalable, fully automated, secure, and can support the growth of the business.
  • Build Scalable Architectures: Design and implement scalable, secure, and high-performing cloud-native solutions, leveraging modern technologies.
  • API Development and Integration: Design and build secure RESTful and GraphQL APIs, ensuring seamless integration with core banking systems (e.g., Mambu) and external services like Open Banking platforms.
  • Data Engineering and Analytics: Work closely with data teams to define robust data pipelines and scalable cloud-based data platforms using tools like Apache Kafka, Snowflake, or Databricks.
  • Monitoring and Performance Tuning: Implement advanced monitoring and observability solutions using tools like Prometheus, Grafana, or Datadog to proactively identify and resolve performance bottlenecks.
  • Code and System Optimisation: Proactively analyse and optimise existing systems for improved performance, scalability, and maintainability.

Core skill set for this position:

  • Strong experience building and scaling Lending or Savings platforms, with a focus on security compliance and performance, is a must.
  • Strong experience working within the financial services industry, preferably retail banking, digital banking, or investment banking industry, is a must-have.
  • Strong experience coding in any of the following languages: Java, C#, Python, and React is a must-have.
  • Proven experience leading a team of cross functional engineers, providing coaching and mentoring whilst being hands-on is a must-have.
  • Strong technical skills and expertise in relevant technologies, such as cloud computing (Azure), microservices architecture, APIs, and data management.
  • Certifications in Cloud Computing (e.g., AWS Certified Solutions Architect, Google Professional Cloud Architect, or Azure Solutions Architect) – Essential.

Benefits:

  • 25% bonus
  • 28 days holiday
  • Holiday Purchase Scheme
  • Occasional travel
  • Health Insurance
  • 13% pension
  • Plus much more.

#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Thinking about switching into data science in your 30s, 40s or 50s? You’re far from alone. Across the UK, businesses are investing in data science talent to turn data into insight, support better decisions and unlock competitive advantage. But with all the hype about machine learning, Python, AI and data unicorns, it can be hard to separate real opportunities from noise. This article gives you a practical, UK-focused reality check on data science careers for mid-life career switchers — what roles really exist, what skills employers really hire for, how long retraining typically takes, what UK recruiters actually look for and how to craft a compelling career pivot story. Whether you come from finance, marketing, operations, research, project management or another field entirely, there are meaningful pathways into data science — and age itself is not the barrier many people fear.

How to Write a Data Science Job Ad That Attracts the Right People

Data science plays a critical role in how organisations across the UK make decisions, build products and gain competitive advantage. From forecasting and personalisation to risk modelling and experimentation, data scientists help translate data into insight and action. Yet many employers struggle to attract the right data science candidates. Job adverts often generate high volumes of applications, but few applicants have the mix of analytical skill, business understanding and communication ability the role actually requires. At the same time, experienced data scientists skip over adverts that feel vague, inflated or misaligned with real data science work. In most cases, the issue is not a lack of talent — it is the quality and clarity of the job advert. Data scientists are analytical, sceptical of hype and highly selective. A poorly written job ad signals unclear expectations and immature data practices. A well-written one signals credibility, focus and serious intent. This guide explains how to write a data science job ad that attracts the right people, improves applicant quality and positions your organisation as a strong data employer.

Maths for Data Science Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are applying for data science jobs in the UK, the maths can feel like a moving target. Job descriptions say “strong statistical knowledge” or “solid ML fundamentals” but they rarely tell you which topics you will actually use day to day. Here’s the truth: most UK data science roles do not require advanced pure maths. What they do require is confidence with a tight set of practical topics that come up repeatedly in modelling, experimentation, forecasting, evaluation, stakeholder comms & decision-making. This guide focuses on the only maths most data scientists keep using: Statistics for decision making (confidence intervals, hypothesis tests, power, uncertainty) Probability for real-world data (base rates, noise, sampling, Bayesian intuition) Linear algebra essentials (vectors, matrices, projections, PCA intuition) Calculus & gradients (enough to understand optimisation & backprop) Optimisation & model evaluation (loss functions, cross-validation, metrics, thresholds) You’ll also get a 6-week plan, portfolio projects & a resources section you can follow without getting pulled into unnecessary theory.