Lead Data Scientist - Sanctions Screening

Wise
London
1 month ago
Create job alert

Company Description

Wise is a global technology company, building the best way to move and manage the world’s money. Min fees. Max ease. Full speed.

Whether people and businesses are sending money to another country, spending abroad, or making and receiving international payments, Wise is on a mission to make their life easier and save them money.

As part of our team, you will be helping us create an entirely new network for the world's money. For everyone, everywhere.

More about .

Job Description

About the Role: 

Our screening team is responsible for sanctions, PEPs (Politically Exposed Persons) and Adverse Media screening. 

The screening team has a name matching service that is routinely tested against an internal benchmarking suite, and annually against external benchmarking suites. 

We are looking for someone to own the testing, tuning and optimisation of these matching algorithms. The candidate will own this function - be responsible for the overall testing and tuning strategy, deep dive testing results, understanding how to optimise rules for efficiency and effectiveness and create rules for complex controls.

Here’s how you’ll be contributing:

Automatising algorithm testing on real customer data as well as synthetic data. Packaging the service into a library or deploying it to staging or production environments

Benchmark testing

Analyse results from exact name matching and fuzzy name matching against internal and external benchmarks

Identify and categorise types of missed cases and map those to known or new issues

Propose technical solutions to reduce the number of missed cases identified

Benchmark creation

Design an internal test set to evaluate both the precision and recall of the screening engine

Align performance on the test set with real-life production performance

Extend internal benchmarking to new scenarios for better coverage of screening algorithms

Define an overall strategy for testing and tuning

Evaluate the use of an internal benchmarking tool 

Evaluate testing capabilities of external vendors in the market to define the most effective method of continuous external benchmarking, processes of governance 

Tailor business rules to reduce hit rate, prepare tuning data, reviewing hit reduction strategies and work with product managers, compliance and engineers to ensure roadmap alignment

Rule optimisation

Tweaking engine configuration to find the sweet spot for precision and recall.

Provide answers on how many historical true positives we would miss based on different optimisations

Work on advanced rules for complicated controls, such as vessel screening
 

Uncover and action on opportunities to help the Screening operational team scale

Automatising or creating solutions to assist operations in their work

Modify existing tooling introducing LLM assistants to improve the efficiency of agents and speed of case resolution

A bit about you: 

Experience implementing, testing and evaluating performance of multiple rules across systems;

Strong Python knowledge. Ability to read through code, especially Java. Demonstrable experience collaborating with engineering on services;

Strong algorithmic design and testing skills. A big plus for proven experience with name matching algorithms;

Experience with statistical analysis and good presentation skills to drive insight into action;

A strong product mindset with the ability to work independently in a cross-functional and cross-team environment;

Good communication skills and ability to get the point across to non-technical individuals;

Strong problem solving skills with the ability to help refine problem statements and figure out how to solve them.

Some extra skills that are great (but not essential):

Familiarity with automating operational processes through technical solution, for example Large Language Models;

Knowledge of Sanctions and Name Screening Optimisation and Tuning

Experience working in a heavily regulated business domain.

We’re people without borders — without judgement or prejudice, too. We want to work with the best people, no matter their background. So if you’re passionate about learning new things and keen to join our mission, you’ll fit right in.

Also, qualifications aren’t that important to us. If you’ve got great experience, and you’re great at articulating your thinking, we’d like to hear from you.

And because we believe that diverse teams build better products, we’d especially love to hear from you if you’re from an under-represented demographic.

Additional Information

For everyone, everywhere. We're people building money without borders — without judgement or prejudice, too. We believe teams are strongest when they are diverse, equitable and inclusive.

We're proud to have a truly international team, and we celebrate our differences.
Inclusive teams help us live our values and make sure every Wiser feels respected, empowered to contribute towards our mission and able to progress in their careers.

If you want to find out more about what it's like to work at Wise visit .

Keep up to date with life at Wise by following us on and .

Related Jobs

View all jobs

Lead Data Scientist

Lead Data Scientist (Greater Manchester)

Lead Data Scientist

Lead Data Scientist

Lead Data Scientist

Lead Data Scientist

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Quantum-Enhanced AI in Data Science: Embracing the Next Frontier

Data science has undergone a staggering transformation in the past decade, evolving from a niche academic discipline into a linchpin of modern industry. Across every sector—finance, healthcare, retail, manufacturing—data scientists have become indispensable, leveraging statistical methods and machine learning to turn raw information into actionable insights. Yet as datasets grow ever larger and machine learning models become more computationally expensive, there are genuine questions about how far current methods can be pushed. Enter quantum computing, a nascent but promising technology grounded in the counterintuitive principles of quantum mechanics. Often dismissed just a few years ago as purely experimental, quantum computing is quickly gaining traction as prototypes evolve into cloud-accessible machines. When paired with artificial intelligence—particularly in the realm of data science—the results could be game-changing. From faster model training and complex optimisation to entirely new forms of data analysis, quantum-enhanced AI stands poised to disrupt established practices and create new opportunities. In this article, we will: Explore how data science has reached its current limits in certain areas, and why classical hardware might no longer suffice. Provide an accessible overview of quantum computing concepts and how they differ from classical systems. Examine the potential of quantum-enhanced AI to solve key data science challenges, from data wrangling to advanced machine learning. Highlight real-world applications, emerging job roles, and the skills you need to thrive in this new landscape. Offer actionable steps for data professionals eager to stay ahead of the curve in a rapidly evolving field. Whether you’re a practising data scientist, a student weighing up your future specialisations, or an executive curious about the next technological leap, read on. The quantum era may be closer than you think, and it promises to radically transform the very fabric of data science.

Data Science Jobs at Newly Funded UK Start-ups: Q3 2025 Investment Tracker

Data science has become an indispensable cornerstone of modern business, driving decisions across finance, healthcare, e-commerce, manufacturing, and beyond. As organisations scramble to capitalise on the insights their data can offer, data scientists and machine learning (ML) experts find themselves in ever-higher demand. In the UK, which has cultivated a robust ecosystem of tech innovation and academic excellence, data-driven start-ups continue to blossom—fuelled by venture capital, government grants, and a vibrant talent pool. In this Q3 2025 Investment Tracker, we delve into the newly funded UK start-ups making waves in data science. Beyond celebrating their funding milestones, we’ll explore the job opportunities these investments have created for aspiring and seasoned data scientists alike. Whether you’re interested in advanced analytics, NLP (Natural Language Processing), computer vision, or MLOps, these start-ups might just offer the career leap you’ve been waiting for.

Portfolio Projects That Get You Hired for Data Science Jobs (With Real GitHub Examples)

Data science is at the forefront of innovation, enabling organisations to turn vast amounts of data into actionable insights. Whether it’s building predictive models, performing exploratory analyses, or designing end-to-end machine learning solutions, data scientists are in high demand across every sector. But how can you stand out in a crowded job market? Alongside a solid CV, a well-curated data science portfolio often makes the difference between getting an interview and getting overlooked. In this comprehensive guide, we’ll explore: Why a data science portfolio is essential for job seekers. Selecting projects that align with your target data science roles. Real GitHub examples showcasing best practices. Actionable project ideas you can build right now. Best ways to present your projects and ensure recruiters can find them easily. By the end, you’ll be equipped to craft a compelling portfolio that proves your skills in a tangible way. And when you’re ready for your next career move, remember to upload your CV on DataScience-Jobs.co.uk so that your newly showcased work can be discovered by employers looking for exactly what you have to offer.