National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Lead Data Scientist

Xcede
Leeds
1 week ago
Create job alert

Lead Data Scientist

Surrey office, x1 day every two weeks.


A well-established, product-led business is looking for a Lead Data Scientist to spearhead innovation and drive measurable value through advanced machine learning, experimentation, and the development of production-grade models.


Sitting within a cross-functional data team, this is a hands-on leadership role with the autonomy to shape the modelling roadmap, contribute to R&D strategy, and influence pricing and risk decisions across multiple business lines. You’ll manage a small team of data scientists, guiding them through delivery while remaining actively involved in technical implementation and experimentation.


This is a unique opportunity for someone passionate about building machine learning systems that go beyond prototypes — models that deliver real-world commercial outcomes in a data-rich, regulated environment.


Key Responsibilities

  • Lead a high-performing team of data scientists to deliver cross-functional, impactful AI/ML initiatives
  • Design and implement predictive models and machine learning solutions for core business areas
  • Build and productionise models in collaboration with data engineers and platform teams
  • Apply advanced statistical techniques to extract insights and guide product and pricing strategies
  • Work closely with stakeholders to understand requirements, define modelling goals, and demonstrate business value
  • Evaluate vendor data sources, assess economic and technical feasibility, and lead test-and-learn initiatives
  • Contribute to the modelling roadmap, experimentation frameworks, and internal data science tooling
  • Produce clean, maintainable, version-controlled code and refactor solutions into reusable libraries and APIs
  • Coach junior team members and promote best practices across the wider data and analytics community


Requirements


  • Ideally, 6+ years of hands-on experience applying data science techniques in commercial or research-led environments, delivering clear business outcomes
  • Advanced academic background (MSc or PhD) in a technical or quantitative field such as Machine Learning, Computer Science, or Statistics
  • Strong programming ability in Python (data science ecosystem) and SQL, with proven experience handling large, complex datasets
  • Solid track record of building, validating, and deploying machine learning models into real-world systems
  • Practical experience designing experiments, selecting evaluation metrics, and applying multivariate testing frameworks
  • Leadership mindset — you’ve mentored or managed data science colleagues or helped steer technical decisions in a collaborative team
  • Comfortable with version control (Git) and familiar with engineering workflows like CI/CD and containerised environments
  • Skilled at working with both structured and unstructured data to unlock insights and power models
  • Hands-on experience with Databricks, Apache Spark, or similar tools used in large-scale data processing
  • Exposure to machine learning model deployment using APIs or lightweight serving frameworks like Flask or Keras
  • Familiarity with geospatial data would be a great bonus!


If this role interests you and you would like to learn more, please apply here or contact us via (feel free to include a CV for review).

Related Jobs

View all jobs

Lead Data Scientist

Lead Data Scientist

Lead Data Scientist

Lead Data Scientist

Lead Data Scientist (Equity Only) - 1%

Lead Data Scientist (Equity Only) - 1%

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

LinkedIn Profile Checklist for Data Science Jobs: 10 Tweaks to Elevate Recruiter Engagement

Data science recruiters often sift through dozens of profiles to find candidates skilled in Python, machine learning, statistical modelling and data visualisation—sometimes before roles even open. A generic LinkedIn profile won’t suffice in this data-driven era. This step-by-step LinkedIn for data science jobs checklist outlines ten targeted tweaks to elevate recruiter engagement. Whether you’re an aspiring junior data scientist, a specialist in MLOps, or a seasoned analytics leader, these optimisations will sharpen your profile’s search relevance and demonstrate your analytical impact.

Part-Time Study Routes That Lead to Data Science Jobs: Evening Courses, Bootcamps & Online Masters

Data science sits at the intersection of statistics, programming and domain expertise—unearthing insights that drive business decisions, product innovation and research breakthroughs. In the UK, organisations from fintech and healthcare to retail and public sector are investing heavily in data-driven strategies, fuelling unprecedented demand for data scientists, machine learning engineers and analytics consultants. According to recent projections, data science roles will grow by over 40% in the next five years, offering lucrative salaries and varied career paths. Yet many professionals hesitate to leave their current jobs or pause personal commitments for full-time study. The good news? A vibrant ecosystem of part-time learning routes—Evening Courses, Intensive Bootcamps and Flexible Online Master’s Programmes—empowers you to learn data science while working. This comprehensive guide explores every pathway: foundational CPD units and short courses, hands-on bootcamps, accredited online MScs, plus funding options, planning strategies and a real-world case study. Whether you’re an analyst looking to formalise your skills, a software developer pivoting into data or a manager seeking to harness data-driven decision-making, you’ll find the right route to fit your schedule, budget and career goals.

The Ultimate Assessment-Centre Survival Guide for Data Science Jobs in the UK

Assessment centres for data science positions in the UK are designed to replicate the multifaceted challenges of real-world analytics teams. Employers combine psychometric assessments, coding tests, statistical reasoning exercises, group case studies and behavioural interviews to see how you interpret data, build models, communicate insights and collaborate under pressure. Whether you’re specialising in predictive modelling, NLP or computer vision, this guide provides a step-by-step roadmap to excel at every stage and secure your next data science role.