Lead Data Scientist

Kainos Group plc
Belfast
4 days ago
Create job alert

JOBP****ROFILE DESCRIPTION MAIN PURPOSE OF THE ROLE&RESPONSIBILITIES IN THE BUSINESS: As a Lead Data Scientist at Kainos, you will architect, design, and deliver advanced AI solutions leveraging state-of-the-art machine learning, generative and agentic AI technologies. You will drive the adoption of modern AI frameworks, AIOps best practices and scalable cloud-native architectures. Your role will involve hands-on technical leadership, collaborating with customers to translate business challenges into trustworthy AI solutions and ensuring responsible AI practices throughout. As a technical mentor, you will foster a culture of innovation, continuous learning, and engineering excellence.**MINIMUM(ESSENTIAL)**REQUIREMENTS: Experience with the latest AI engineering approaches such as prompt engineering, retrieval-augmented generation (RAG), and agentic AI.Strong Python skills with a grounding in software engineering best practices (CI/CD, testing, code reviews etc).Strong interpersonal skills with the ability to lead client projects and establish requirements in non-technical language.We are passionate about developing people, you will bring experience in managing, coaching, and developing junior members of a team and wider community.Demonstrable experience with modern deep learning frameworks (e.g. PyTorch, TensorFlow), fine-tuning or distillation of LLMs (e.g., GPT, Llama, Claude, Gemini), machine learning libraries (e.g. scikit-learn, XGBoost).Experience with data storage for AI, vector databases, semantic search, and knowledge graphs.Familiarity with AI security, privacy, and compliance standards e.g. ISO42001.At Kainos we use technology to solve real problems for our customers, overcome big challenges for businesses, and make people’s lives easier. We build strong relationships with our customers and go beyond to change the way they work today and the impact they have tomorrow.Our two specialist practices, Digital Services and Workday, work globally for clients across healthcare, commercial and the public sector to make the world a little bit better, day by day.Our people love the exciting work, the cutting-edge technologies and the benefits we offer. That’s why we’ve been ranked in the Sunday Times Top 100 Best Companies on numerous occasions.For more information, see .
#J-18808-Ljbffr

Related Jobs

View all jobs

Lead Data Scientist

Lead Data Scientist

Lead Data Scientist

Lead Data Scientist

Lead Data Scientist - Drug Discovery

Lead Data Scientist - Remote

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write a Data Science Job Ad That Attracts the Right People

Data science plays a critical role in how organisations across the UK make decisions, build products and gain competitive advantage. From forecasting and personalisation to risk modelling and experimentation, data scientists help translate data into insight and action. Yet many employers struggle to attract the right data science candidates. Job adverts often generate high volumes of applications, but few applicants have the mix of analytical skill, business understanding and communication ability the role actually requires. At the same time, experienced data scientists skip over adverts that feel vague, inflated or misaligned with real data science work. In most cases, the issue is not a lack of talent — it is the quality and clarity of the job advert. Data scientists are analytical, sceptical of hype and highly selective. A poorly written job ad signals unclear expectations and immature data practices. A well-written one signals credibility, focus and serious intent. This guide explains how to write a data science job ad that attracts the right people, improves applicant quality and positions your organisation as a strong data employer.

Maths for Data Science Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are applying for data science jobs in the UK, the maths can feel like a moving target. Job descriptions say “strong statistical knowledge” or “solid ML fundamentals” but they rarely tell you which topics you will actually use day to day. Here’s the truth: most UK data science roles do not require advanced pure maths. What they do require is confidence with a tight set of practical topics that come up repeatedly in modelling, experimentation, forecasting, evaluation, stakeholder comms & decision-making. This guide focuses on the only maths most data scientists keep using: Statistics for decision making (confidence intervals, hypothesis tests, power, uncertainty) Probability for real-world data (base rates, noise, sampling, Bayesian intuition) Linear algebra essentials (vectors, matrices, projections, PCA intuition) Calculus & gradients (enough to understand optimisation & backprop) Optimisation & model evaluation (loss functions, cross-validation, metrics, thresholds) You’ll also get a 6-week plan, portfolio projects & a resources section you can follow without getting pulled into unnecessary theory.

Neurodiversity in Data Science Careers: Turning Different Thinking into a Superpower

Data science is all about turning messy, real-world information into decisions, products & insights. It sits at the crossroads of maths, coding, business & communication – which means it needs people who see patterns, ask unusual questions & challenge assumptions. That makes data science a natural fit for many neurodivergent people, including those with ADHD, autism & dyslexia. If you’re neurodivergent & thinking about a data science career, you might have heard comments like “you’re too distracted for complex analysis”, “too literal for stakeholder work” or “too disorganised for large projects”. In reality, the same traits that can make traditional environments difficult often line up beautifully with data science work. This guide is written for data science job seekers in the UK. We’ll explore: What neurodiversity means in a data science context How ADHD, autism & dyslexia strengths map to common data science roles Practical workplace adjustments you can request under UK law How to talk about your neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in data science – & how to turn “different thinking” into a real career advantage.