Lead Data Scientist

Barclays Bank Plc
Northampton
2 days ago
Create job alert

To use innovative data analytics and machine learning techniques to extract valuable insights from the bank's data reserves, leveraging these insights to inform strategic decision-making, improve operational efficiency, and drive innovation across the organisation.


Responsibilities

  • Identification, collection, extraction of data from various sources, including internal and external sources.
  • Performing data cleaning, wrangling, and transformation to ensure its quality and suitability for analysis.
  • Development and maintenance of efficient data pipelines for automated data acquisition and processing.
  • Design and conduct of statistical and machine learning models to analyse patterns, trends, and relationships in the data.
  • Development and implementation of predictive models to forecast future outcomes and identify potential risks and opportunities.
  • Collaborate with business stakeholders to seek out opportunities to add value from data through Data Science.

Vice President Expectations

  • To contribute or set strategy, drive requirements and make recommendations for change. Plan resources, budgets, and policies; manage and maintain policies/ processes; deliver continuous improvements and escape breaches of policies/procedures..
  • If managing a team, they define jobs and responsibilities, planning for the department's future needs and operations, counselling employees on performance and contributing to employee pay decisions/changes. They may also lead a number of specialists to influence the operations of a department, in alignment with strategic as well as tactical priorities, while balancing short and long term goals and ensuring that budgets and schedules meet corporate requirements..
  • If the position has leadership responsibilities, People Leaders are expected to demonstrate a clear set of leadership behaviours to create an environment for colleagues to thrive and deliver to a consistently excellent standard. The four LEAD behaviours are: L - Listen and be authentic, E - Energise and inspire, A - Align across the enterprise, D - Develop others..
  • OR for an individual contributor, they will be a subject matter expert within own discipline and will guide technical direction. They will lead collaborative, multi-year assignments and guide team members through structured assignments, identify the need for the inclusion of other areas of specialisation to complete assignments. They will train, guide and coach less experienced specialists and provide information affecting long term profits, organisational risks and strategic decisions..
  • Advise key stakeholders, including functional leadership teams and senior management on functional and cross functional areas of impact and alignment.
  • Manage and mitigate risks through assessment, in support of the control and governance agenda.
  • Demonstrate leadership and accountability for managing risk and strengthening controls in relation to the work your team does.
  • Demonstrate comprehensive understanding of the organisation functions to contribute to achieving the goals of the business.
  • Collaborate with other areas of work, for business aligned support areas to keep up to speed with business activity and the business strategies.
  • Create solutions based on sophisticated analytical thought comparing and selecting complex alternatives. In-depth analysis with interpretative thinking will be required to define problems and develop innovative solutions.
  • Adopt and include the outcomes of extensive research in problem solving processes.
  • Seek out, build and maintain trusting relationships and partnerships with internal and external stakeholders in order to accomplish key business objectives, using influencing and negotiating skills to achieve outcomes.

All colleagues will be expected to demonstrate the Barclays Values of Respect, Integrity, Service, Excellence and Stewardship - our moral compass, helping us do what we believe is right. They will also be expected to demonstrate the Barclays Mindset - to Empower, Challenge and Drive - the operating manual for how we behave.


Join us as a Lead Data Scientist at Barclays where you'll be primarily responsible for setting clear direction for AI and data science projects, mentoring and developing team members, designing scalable, effective AI solutions and guiding teams through technical transformation.


To be successful as a Lead Data Scientist, you should have experience with:

  • Advanced Python Programming - Expert knowledge of data science libraries e.g. NumPy, Pandas, scikit-learn, PyTorch
  • Machine Learning Expertise - Demonstrated experience in designing, training, evaluating, and deploying production-grade ML models
  • Software Engineering Excellence - Experience building modular, maintainable code with CI/CD pipelines, testing frameworks, and deployment automation
  • Technical Leadership - Track record of successfully leading data science projects, establishing best practices, and driving technical innovation

Some other highly valued skills may include:

  • AI Systems - Proven ability to design and implement enterprise-scale AI solutions with consideration for performance, scalability and governance
  • People Management - Experience in line management, performance reviews, and career development for technical teams
  • Strategic Transformation - Ability to lead organizational change initiatives and develop long-term technical roadmaps
  • Generative AI & Large Language Models - Hands-on experience with transformer architectures
  • Specialised Data Science Expertise - Experience with advanced techniques such as causal inference, time series forecasting, optimisation techniques, graph networks

You may be assessed on key critical skills relevant for success in the role, such as risk and controls, change and transformation, business acumen, strategic thinking and digital and technology, as well as job-specific technical skills.


#J-18808-Ljbffr

Related Jobs

View all jobs

Lead Data Scientist

Lead Data Scientist

Lead Data Scientist

Lead Data Scientist

Lead Data Scientist - Drug Discovery

Lead Data Scientist - Remote

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write a Data Science Job Ad That Attracts the Right People

Data science plays a critical role in how organisations across the UK make decisions, build products and gain competitive advantage. From forecasting and personalisation to risk modelling and experimentation, data scientists help translate data into insight and action. Yet many employers struggle to attract the right data science candidates. Job adverts often generate high volumes of applications, but few applicants have the mix of analytical skill, business understanding and communication ability the role actually requires. At the same time, experienced data scientists skip over adverts that feel vague, inflated or misaligned with real data science work. In most cases, the issue is not a lack of talent — it is the quality and clarity of the job advert. Data scientists are analytical, sceptical of hype and highly selective. A poorly written job ad signals unclear expectations and immature data practices. A well-written one signals credibility, focus and serious intent. This guide explains how to write a data science job ad that attracts the right people, improves applicant quality and positions your organisation as a strong data employer.

Maths for Data Science Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are applying for data science jobs in the UK, the maths can feel like a moving target. Job descriptions say “strong statistical knowledge” or “solid ML fundamentals” but they rarely tell you which topics you will actually use day to day. Here’s the truth: most UK data science roles do not require advanced pure maths. What they do require is confidence with a tight set of practical topics that come up repeatedly in modelling, experimentation, forecasting, evaluation, stakeholder comms & decision-making. This guide focuses on the only maths most data scientists keep using: Statistics for decision making (confidence intervals, hypothesis tests, power, uncertainty) Probability for real-world data (base rates, noise, sampling, Bayesian intuition) Linear algebra essentials (vectors, matrices, projections, PCA intuition) Calculus & gradients (enough to understand optimisation & backprop) Optimisation & model evaluation (loss functions, cross-validation, metrics, thresholds) You’ll also get a 6-week plan, portfolio projects & a resources section you can follow without getting pulled into unnecessary theory.

Neurodiversity in Data Science Careers: Turning Different Thinking into a Superpower

Data science is all about turning messy, real-world information into decisions, products & insights. It sits at the crossroads of maths, coding, business & communication – which means it needs people who see patterns, ask unusual questions & challenge assumptions. That makes data science a natural fit for many neurodivergent people, including those with ADHD, autism & dyslexia. If you’re neurodivergent & thinking about a data science career, you might have heard comments like “you’re too distracted for complex analysis”, “too literal for stakeholder work” or “too disorganised for large projects”. In reality, the same traits that can make traditional environments difficult often line up beautifully with data science work. This guide is written for data science job seekers in the UK. We’ll explore: What neurodiversity means in a data science context How ADHD, autism & dyslexia strengths map to common data science roles Practical workplace adjustments you can request under UK law How to talk about your neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in data science – & how to turn “different thinking” into a real career advantage.