Lead Data Engineer / Architect – Databricks Active - SC Cleared

Farringdon, Greater London
3 days ago
Create job alert

Lead Data Engineer / Architect – Databricks - SC Cleared
SR2 is supporting a critical greenfield transformation programme in the public sector and urgently seeks a hands-on Lead Data Engineer/Architect with deep Databricks experience to help set the direction and strategy for the project.
This is a strategic role for someone who has not only delivered but also led end-to-end Databricks implementations, ideally across multiple programmes. You’ll define the technical architecture, lead Proof of Concepts (PoCs), and build a modern data platform from scratch in a highly visible public-sector environment.
Key Responsibilities:

Act as the technical lead for a new Databricks implementation, working from greenfield through to full production deployment.
Own and deliver streaming and batch data pipelines in Databricks for complex, sensitive use cases.
Define and set architectural standards and delivery roadmaps for the data platform.
Lead PoCs with hyperscalers to assess and select appropriate data services and tooling.
Collaborate with engineering teams, stakeholders, and partners to ensure scalability, performance, and compliance.
Document best practices, decisions, and technical architecture to support future scaling and handover.Essential Experience:

2–3+ years of strong, hands-on Databricks experience, including having led implementations from setup through to production.
Demonstrable track record of delivering greenfield or ground-up data platform builds.
Strong Python skills for data transformation and orchestration.
Deep understanding of modern data architectures, pipelines, and cloud-native solutions – especially AWS.
Able to operate strategically (architecture, direction-setting) and tactically (hands-on engineering).
Active SC Clearance (must be current)

Related Jobs

View all jobs

Lead Data Engineer

Lead Data Engineer

Lead Data Engineer

Lead Data Engineer

Senior Data Engineer

Senior Azure Data Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Maths for Data Science Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are applying for data science jobs in the UK, the maths can feel like a moving target. Job descriptions say “strong statistical knowledge” or “solid ML fundamentals” but they rarely tell you which topics you will actually use day to day. Here’s the truth: most UK data science roles do not require advanced pure maths. What they do require is confidence with a tight set of practical topics that come up repeatedly in modelling, experimentation, forecasting, evaluation, stakeholder comms & decision-making. This guide focuses on the only maths most data scientists keep using: Statistics for decision making (confidence intervals, hypothesis tests, power, uncertainty) Probability for real-world data (base rates, noise, sampling, Bayesian intuition) Linear algebra essentials (vectors, matrices, projections, PCA intuition) Calculus & gradients (enough to understand optimisation & backprop) Optimisation & model evaluation (loss functions, cross-validation, metrics, thresholds) You’ll also get a 6-week plan, portfolio projects & a resources section you can follow without getting pulled into unnecessary theory.

Neurodiversity in Data Science Careers: Turning Different Thinking into a Superpower

Data science is all about turning messy, real-world information into decisions, products & insights. It sits at the crossroads of maths, coding, business & communication – which means it needs people who see patterns, ask unusual questions & challenge assumptions. That makes data science a natural fit for many neurodivergent people, including those with ADHD, autism & dyslexia. If you’re neurodivergent & thinking about a data science career, you might have heard comments like “you’re too distracted for complex analysis”, “too literal for stakeholder work” or “too disorganised for large projects”. In reality, the same traits that can make traditional environments difficult often line up beautifully with data science work. This guide is written for data science job seekers in the UK. We’ll explore: What neurodiversity means in a data science context How ADHD, autism & dyslexia strengths map to common data science roles Practical workplace adjustments you can request under UK law How to talk about your neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in data science – & how to turn “different thinking” into a real career advantage.

Data Science Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK data science hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise rigorous problem framing, high‑quality analytics & modelling, experiment/causality, production awareness (MLOps), governance/ethics, and measurable product or commercial impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for product/data scientists, applied ML scientists, decision scientists, econometricians, growth/marketing analysts, and ML‑adjacent data scientists supporting LLM/AI products. Who this is for: Product/decision/data scientists, applied ML scientists, econometrics & causal inference specialists, experimentation leads, analytics engineers crossing into DS, ML generalists with strong statistics, and data scientists collaborating with platform/MLOps teams in the UK.