Lead Data Engineer / Architect – Databricks Active - SC Cleared

Farringdon, Greater London
3 weeks ago
Create job alert

Lead Data Engineer / Architect – Databricks - SC Cleared
SR2 is supporting a critical greenfield transformation programme in the public sector and urgently seeks a hands-on Lead Data Engineer/Architect with deep Databricks experience to help set the direction and strategy for the project.
This is a strategic role for someone who has not only delivered but also led end-to-end Databricks implementations, ideally across multiple programmes. You’ll define the technical architecture, lead Proof of Concepts (PoCs), and build a modern data platform from scratch in a highly visible public-sector environment.
Key Responsibilities:

Act as the technical lead for a new Databricks implementation, working from greenfield through to full production deployment.
Own and deliver streaming and batch data pipelines in Databricks for complex, sensitive use cases.
Define and set architectural standards and delivery roadmaps for the data platform.
Lead PoCs with hyperscalers to assess and select appropriate data services and tooling.
Collaborate with engineering teams, stakeholders, and partners to ensure scalability, performance, and compliance.
Document best practices, decisions, and technical architecture to support future scaling and handover.Essential Experience:

2–3+ years of strong, hands-on Databricks experience, including having led implementations from setup through to production.
Demonstrable track record of delivering greenfield or ground-up data platform builds.
Strong Python skills for data transformation and orchestration.
Deep understanding of modern data architectures, pipelines, and cloud-native solutions – especially AWS.
Able to operate strategically (architecture, direction-setting) and tactically (hands-on engineering).
Active SC Clearance (must be current)

Related Jobs

View all jobs

Data Engineering Manager

Data Engineering Manager

Senior Data Engineer

Senior Data Engineer

Principal Data Architect

Lead Data Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

The Skills Gap in Data Science Jobs: What Universities Aren’t Teaching

Data science has become one of the most visible and sought-after careers in the UK technology market. From financial services and retail to healthcare, media, government and sport, organisations increasingly rely on data scientists to extract insight, guide decisions and build predictive models. Universities have responded quickly. Degrees in data science, analytics and artificial intelligence have expanded rapidly, and many computer science courses now include data-focused pathways. And yet, despite the volume of graduates entering the market, employers across the UK consistently report the same problem: Many data science candidates are not job-ready. Vacancies remain open. Hiring processes drag on. Candidates with impressive academic backgrounds fail interviews or struggle once hired. The issue is not intelligence or effort. It is a persistent skills gap between university education and real-world data science roles. This article explores that gap in depth: what universities teach well, what they often miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in data science.

Data Science Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Thinking about switching into data science in your 30s, 40s or 50s? You’re far from alone. Across the UK, businesses are investing in data science talent to turn data into insight, support better decisions and unlock competitive advantage. But with all the hype about machine learning, Python, AI and data unicorns, it can be hard to separate real opportunities from noise. This article gives you a practical, UK-focused reality check on data science careers for mid-life career switchers — what roles really exist, what skills employers really hire for, how long retraining typically takes, what UK recruiters actually look for and how to craft a compelling career pivot story. Whether you come from finance, marketing, operations, research, project management or another field entirely, there are meaningful pathways into data science — and age itself is not the barrier many people fear.

How to Write a Data Science Job Ad That Attracts the Right People

Data science plays a critical role in how organisations across the UK make decisions, build products and gain competitive advantage. From forecasting and personalisation to risk modelling and experimentation, data scientists help translate data into insight and action. Yet many employers struggle to attract the right data science candidates. Job adverts often generate high volumes of applications, but few applicants have the mix of analytical skill, business understanding and communication ability the role actually requires. At the same time, experienced data scientists skip over adverts that feel vague, inflated or misaligned with real data science work. In most cases, the issue is not a lack of talent — it is the quality and clarity of the job advert. Data scientists are analytical, sceptical of hype and highly selective. A poorly written job ad signals unclear expectations and immature data practices. A well-written one signals credibility, focus and serious intent. This guide explains how to write a data science job ad that attracts the right people, improves applicant quality and positions your organisation as a strong data employer.