Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Lead Data Engineer

Experis
London
14 hours ago
Create job alert

Job Title: Lead Data Engineer
Location: London (Hybrid)
Contract: 6 Months (Potential Extension)
Start Date: ASAP

About the Client
Our client is transforming their industry by replacing cigarettes with innovative, smoke-free alternatives. They are leveraging technology, data, and AI to drive a global shift toward a smoke-free world. This is a fast-paced, high-impact environment, perfect for candidates who are strategic, independent, and excited to work at the forefront of data and AI innovation

The Role
We are looking for a skilled Data Engineer to design, build, and optimize enterprise-scale data pipelines and cloud platforms. You will translate business and AI/ML requirements into robust, scalable solutions while collaborating across multi-disciplinary teams and external vendors.

As a key member of the data architecture you will:
Build and orchestrate data pipelines across Snowflake and AWS environments.
Apply data modeling, warehousing, and architecture principles (Kimball/Inmon).
Develop pipeline programming using Python, Spark, and SQL; integrate APIs for seamless workflows.
Support Machine Learning and AI initiatives, including NLP, Computer Vision, Time Series, and LLMs.
Implement MLOps, CI/CD pipelines, data testing, and quality frameworks.
Act as an AI super-user, applying prompt engineering and creating AI artifacts.
Work independently while providing clear justification for technical decisions.
Key Skills & Experience
Strong experience in data pipeline development and orchestration.
Proficient with cloud platforms (Snowflake, AWS fundamentals).
Solid understanding of data architecture, warehousing, and modeling.
Programming expertise: Python, Spark, SQL, API integration.
Knowledge of ML/AI frameworks, MLOps, and advanced analytics concepts.
Experience with CI/CD, data testing frameworks, and versioning strategies.
Ability to work effectively in multi-team, vendor-integrated environments.
Why This Role
Join a global, transformative initiative shaping a smoke-free future.
Work with cutting-edge cloud, AI, and data technologies.
Opportunity to influence technical and strategic decisions across enterprise data delivery.
Dynamic, innovative environment where your work has real business impact.

TPBN1_UKTJ

Related Jobs

View all jobs

Lead Data Engineer

Lead Data Engineer

Lead Data Engineer

Lead Data Engineer

Lead Data Engineer

Lead Data Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK data science hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise rigorous problem framing, high‑quality analytics & modelling, experiment/causality, production awareness (MLOps), governance/ethics, and measurable product or commercial impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for product/data scientists, applied ML scientists, decision scientists, econometricians, growth/marketing analysts, and ML‑adjacent data scientists supporting LLM/AI products. Who this is for: Product/decision/data scientists, applied ML scientists, econometrics & causal inference specialists, experimentation leads, analytics engineers crossing into DS, ML generalists with strong statistics, and data scientists collaborating with platform/MLOps teams in the UK.

Why Data Science Careers in the UK Are Becoming More Multidisciplinary

Data science once meant advanced statistics, machine learning models and coding in Python or R. In the UK today, it has become one of the most in-demand professions across sectors — from healthcare to finance, retail to government. But as the field matures, employers now expect more than technical modelling skills. Modern data science is multidisciplinary. It requires not just coding and algorithms, but also legal knowledge, ethical reasoning, psychological insight, linguistic clarity and human-centred design. Data scientists are expected to interpret, communicate and apply data responsibly, with awareness of law, human behaviour and accessibility. In this article, we’ll explore why data science careers in the UK are becoming more multidisciplinary, how these five disciplines intersect with data science, and what job-seekers & employers need to know to succeed in this transformed field.

Data Science Team Structures Explained: Who Does What in a Modern Data Science Department

Data science is one of the most in-demand, dynamic, and multidisciplinary areas in the UK tech and business landscape. Organisations from finance, retail, health, government, and beyond are using data to drive decisions, automate processes, personalise services, predict trends, detect fraud, and more. To do that well, companies don’t just need good data scientists; they need teams with clearly defined roles, responsibilities, workflows, collaboration, and governance. If you're aiming for a role in data science or recruiting for one, understanding the structure of a data science department—and who does what—can make all the difference. This article breaks down the key roles, how they interact across the lifecycle of a data science project, what skills and qualifications are typical in the UK, expected salary ranges, challenges, trends, and how to build or grow an effective team.