Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Lead Data Engineer

FanDuel
Edinburgh
1 month ago
Applications closed

Related Jobs

View all jobs

Lead Data Engineer

Lead Data Engineer

Lead Data Engineer

Lead Data Engineer

Lead Data Engineer

Lead Data Engineer

The requirements listed in our job descriptions are guidelines, not hard and fast rules. You don't have to satisfy every requirement or meet every qualification listed. If your skills are transferable and you are in the ballpark experience-wise, we'd love to speak to you.

ABOUT FANDUEL GROUP

FanDuel Group is a world-class team of brands and products that deliver sports betting, gaming and entertainment to millions of US sports fans every day. That's no easy task, and wouldn't be possible without a fantastic team who have helped us pioneer new products and innovative features that make us a leader in the industry. Whether you're looking for better career progression, improved financial security or just a better sense of belonging, we believe we've created a culture in which everyone can succeed, no matter how you got here.

FanDuel Group is a subsidiary of Flutter Entertainment plc, the world's largest sports betting and gaming operator with a portfolio of globally recognized brands and a constituent of the FTSE 100 index of the London Stock Exchange.

The Position

Our roster has an opening with your name on it!

We are seeking a Lead Data Engineer to lead the technical design and implementation of our most critical data infrastructure and products. In this senior-level individual contributor role, you'll be responsible for designing scalable systems, setting data architecture standards, and solving complex technical challenges that power analytics, data science, and business function use cases across the company.

You will collaborate closely with engineers, product managers, and business stakeholders to architect data solutions that are performant, reliable, and built with a long-term, customer-centric mindset.

Architect High-Impact Data Systems

  • Design and implement scalable, maintainable, and secure batch & streaming data pipelines and architectures that support enterprise-wide data needs
  • Define standards for data modeling, data product design, and pipeline orchestration using modern tools and cloud-native technologies
  • Collaborate with cross-functional stakeholders to translate business and analytical requirements into end-to-end data solutions

Drive Engineering Best Practices

  • Establish and enforce engineering best practices around code quality, testing, documentation, and deployment
  • Contribute to the evolution of the data platform, ensuring systems are modular, interoperable, and resilient
  • Run technical design and code reviews, mentoring and collaborating with peers and raising the bar for engineering excellence

Lead Strategic Initiatives

  • Partner with data platform teams, analytics, and data science to deliver reusable data assets and shared infrastructure
  • Identify and resolve architectural bottlenecks in the current data platform and propose improvements that reduce complexity and boost performance
  • Drive initiatives that improve data quality, lineage, observability, and system reliability

Influence and Collaborate Across Teams

  • Act as a technical liaison between engineering, product, and analytics teams, ensuring alignment on architecture and data strategy
  • Provide technical leadership and guidance to other data engineers and contribute to the team's overall growth and maturity
  • Help evaluate and onboard new technologies, frameworks, and practices to keep our stack modern and efficient

If you're excited by this challenge and want to work within a dynamic company, then we'd love to hear from you!

What We're Looking For

What we're looking for in our next teammate:

  • 8+ years of experience in data engineering or a related field, with a focus on building scalable data systems and platforms.
  • Expertise in modern data tools and frameworks such as Spark, dbt, Airflow, Kafka, Databricks, and cloud-native services (AWS, GCP, or Azure)
  • Understanding of data modeling, distributed systems, ETL/ELT pipelines, and streaming architectures
  • Proficiency in SQL and at least one programming language (e.g., Python, Scala, or Java)
  • Demonstrated experience owning complex technical systems end-to-end, from design through production
  • Excellent communication skills with the ability to explain technical concepts to both technical and non-technical audiences

Preferred Qualifications

  • Experience designing data platforms that support analytics, machine learning, and operational workloads
  • Familiarity with data governance, privacy, and compliance frameworks
  • Background in customer-centric or product-driven environments (e.g., digital, eCommerce, SaaS)
  • Experience with infrastructure-as-code and data platform observability (e.g., Terraform)

What You Can Expect

  • Interesting work - working in a fast-paced and ever-changing industry, new problems and exciting solutions are never too far away. There are always opportunities to learn new skills and broaden your horizons
  • A sense of achievement - Our teams own their own software and when that awesome new feature ships to users and the positive feedback starts rolling in, you can feel really proud of what you and your team created
  • Personal development - clear and defined career pathways for every role at every level, a supportive manager, loads of learning opportunities and even 10% of your time to dedicate to your learning.
  • Belonging - everyone at FanDuel works for each other, we win together, make mistakes together and have lots of fun doing it.
  • Trust - A trusting work environment where productivity is valued above all else, giving you autonomy and ownership of your time and work
  • Great financial package - Including salary, bonus, pension, private healthcare, share save scheme, flexible working & holiday policy along with a number of other benefits.

Diversity, Equity and Inclusion

FanDuel is an equal opportunities employer. Diversity and inclusion in FanDuel means that we respect and value everyone as individuals. We don't tolerate bias, judgement or harassment. Our focus is on developing employees so that they reach their full potential.

The requirements listed in our job descriptions are guidelines, not hard and fast rules. You don't have to satisfy every requirement or meet every qualification listed. If your skills are transferable and you are in the ballpark experience-wise, we'd love to speak to you!
#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK data science hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise rigorous problem framing, high‑quality analytics & modelling, experiment/causality, production awareness (MLOps), governance/ethics, and measurable product or commercial impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for product/data scientists, applied ML scientists, decision scientists, econometricians, growth/marketing analysts, and ML‑adjacent data scientists supporting LLM/AI products. Who this is for: Product/decision/data scientists, applied ML scientists, econometrics & causal inference specialists, experimentation leads, analytics engineers crossing into DS, ML generalists with strong statistics, and data scientists collaborating with platform/MLOps teams in the UK.

Why Data Science Careers in the UK Are Becoming More Multidisciplinary

Data science once meant advanced statistics, machine learning models and coding in Python or R. In the UK today, it has become one of the most in-demand professions across sectors — from healthcare to finance, retail to government. But as the field matures, employers now expect more than technical modelling skills. Modern data science is multidisciplinary. It requires not just coding and algorithms, but also legal knowledge, ethical reasoning, psychological insight, linguistic clarity and human-centred design. Data scientists are expected to interpret, communicate and apply data responsibly, with awareness of law, human behaviour and accessibility. In this article, we’ll explore why data science careers in the UK are becoming more multidisciplinary, how these five disciplines intersect with data science, and what job-seekers & employers need to know to succeed in this transformed field.

Data Science Team Structures Explained: Who Does What in a Modern Data Science Department

Data science is one of the most in-demand, dynamic, and multidisciplinary areas in the UK tech and business landscape. Organisations from finance, retail, health, government, and beyond are using data to drive decisions, automate processes, personalise services, predict trends, detect fraud, and more. To do that well, companies don’t just need good data scientists; they need teams with clearly defined roles, responsibilities, workflows, collaboration, and governance. If you're aiming for a role in data science or recruiting for one, understanding the structure of a data science department—and who does what—can make all the difference. This article breaks down the key roles, how they interact across the lifecycle of a data science project, what skills and qualifications are typical in the UK, expected salary ranges, challenges, trends, and how to build or grow an effective team.