Lead Data Engineer

BJSS
London
1 week ago
Create job alert

About Us


We’re an award-winning innovative tech consultancy - a team of creative problem solvers. Since 1993 we’ve been finding better, more sustainable ways to solve complex technology problems for some of the world’s leading organisations and delivered solutions that millions of people use every day.


In the last 30 years we won several awards, including a prestigious Queen’s Award for Enterprise in the Innovation category for our Enterprise Agile delivery approach.


Operating from 26 locations across the world, we bring together teams of creative experts with diverse backgrounds and experiences, who enjoy working and learning in our collaborative and open culture and are committed to world-class delivery.


We want to continue to grow our team with people just like you!


About the Role


We're building out our Data Engineering practice across multiple levels. Depending on your experience and aspirations, you could be contributing as a key team member, leading a dedicated team, or taking on principal engineer responsibilities across multiple teams and larger strategic projects. The role and responsibilities will be tailored to your experience level and our organisational needs.


We are Software Engineers who use SDLC best practices to build scalable, re-usable data solutions to help clients use their data to gain insights, drive decisions, and deliver business value. Clients engage BJSS to take on their complex challenges, looking to us to help deliver results against their business-critical needs which means we get to work with a wide range of tools and technologies and there are always new things to learn.


BJSS Data Engineers are specialist software engineers that build, optimise, and maintain data applications, systems and services. This role combines the discipline of software engineering with the knowledge and experience of building solutions to deliver business value.


You can expect to get involved in a variety of projects in the cloud (AWS, Azure, GCP), while also gaining opportunities to work with Snowflake, Databricks, BigQuery, and Fabric. We work with near real-time/streaming data, geospatial data and using modern AI-tooling to accelerate development.


About You


You're an engineer at heart and enjoy the challenge of building reliable, efficient data applications, systems, services, and platforms. You will have experience across multiple projects and several of the following skills:


  • You have a good understanding of coding best practices and design patterns, and experience with code and data versioning, dependency management, code quality and optimisation, error handling, logging, monitoring, validation, and alerting
  • You have experience in writing complex queries against relational and non-relational data stores
  • Strong proficiency in Python programming, with a solid understanding of object-oriented programming (OOP) principles, best practices, and a commitment to writing clean, maintainable, and well-tested code
  • Excellent SQL skills, including the ability to write complex queries, optimise query performance, and design efficient database schemas
  • Familiarity with one or more data platform technologies such as Databricks, Snowflake, and/or Microsoft Fabric.

Related Jobs

View all jobs

Lead Data Engineer - Snowflake, DBT, Airflow - London - £100k

Lead Data Engineer - Data Migration (London Area)

Lead data engineer - Hybrid

Lead Data Engineer - Data Migration

Lead Data Engineer

Lead Data Engineer

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Quantum-Enhanced AI in Data Science: Embracing the Next Frontier

Data science has undergone a staggering transformation in the past decade, evolving from a niche academic discipline into a linchpin of modern industry. Across every sector—finance, healthcare, retail, manufacturing—data scientists have become indispensable, leveraging statistical methods and machine learning to turn raw information into actionable insights. Yet as datasets grow ever larger and machine learning models become more computationally expensive, there are genuine questions about how far current methods can be pushed. Enter quantum computing, a nascent but promising technology grounded in the counterintuitive principles of quantum mechanics. Often dismissed just a few years ago as purely experimental, quantum computing is quickly gaining traction as prototypes evolve into cloud-accessible machines. When paired with artificial intelligence—particularly in the realm of data science—the results could be game-changing. From faster model training and complex optimisation to entirely new forms of data analysis, quantum-enhanced AI stands poised to disrupt established practices and create new opportunities. In this article, we will: Explore how data science has reached its current limits in certain areas, and why classical hardware might no longer suffice. Provide an accessible overview of quantum computing concepts and how they differ from classical systems. Examine the potential of quantum-enhanced AI to solve key data science challenges, from data wrangling to advanced machine learning. Highlight real-world applications, emerging job roles, and the skills you need to thrive in this new landscape. Offer actionable steps for data professionals eager to stay ahead of the curve in a rapidly evolving field. Whether you’re a practising data scientist, a student weighing up your future specialisations, or an executive curious about the next technological leap, read on. The quantum era may be closer than you think, and it promises to radically transform the very fabric of data science.

Data Science Jobs at Newly Funded UK Start-ups: Q3 2025 Investment Tracker

Data science has become an indispensable cornerstone of modern business, driving decisions across finance, healthcare, e-commerce, manufacturing, and beyond. As organisations scramble to capitalise on the insights their data can offer, data scientists and machine learning (ML) experts find themselves in ever-higher demand. In the UK, which has cultivated a robust ecosystem of tech innovation and academic excellence, data-driven start-ups continue to blossom—fuelled by venture capital, government grants, and a vibrant talent pool. In this Q3 2025 Investment Tracker, we delve into the newly funded UK start-ups making waves in data science. Beyond celebrating their funding milestones, we’ll explore the job opportunities these investments have created for aspiring and seasoned data scientists alike. Whether you’re interested in advanced analytics, NLP (Natural Language Processing), computer vision, or MLOps, these start-ups might just offer the career leap you’ve been waiting for.

Portfolio Projects That Get You Hired for Data Science Jobs (With Real GitHub Examples)

Data science is at the forefront of innovation, enabling organisations to turn vast amounts of data into actionable insights. Whether it’s building predictive models, performing exploratory analyses, or designing end-to-end machine learning solutions, data scientists are in high demand across every sector. But how can you stand out in a crowded job market? Alongside a solid CV, a well-curated data science portfolio often makes the difference between getting an interview and getting overlooked. In this comprehensive guide, we’ll explore: Why a data science portfolio is essential for job seekers. Selecting projects that align with your target data science roles. Real GitHub examples showcasing best practices. Actionable project ideas you can build right now. Best ways to present your projects and ensure recruiters can find them easily. By the end, you’ll be equipped to craft a compelling portfolio that proves your skills in a tangible way. And when you’re ready for your next career move, remember to upload your CV on DataScience-Jobs.co.uk so that your newly showcased work can be discovered by employers looking for exactly what you have to offer.