Lead Data Engineer

Disney Cruise Line - The Walt Disney Company
London
3 days ago
Create job alert

Disney Entertainment & ESPN Technology

On any given day at Disney Entertainment & ESPN Technology, we’re reimagining ways to create magical viewing experiences for the world’s most beloved stories while also transforming Disney’s media business for the future. Whether that’s evolving our streaming and digital products in new and immersive ways, powering worldwide advertising and distribution to maximize flexibility and efficiency, or delivering Disney’s unmatched entertainment and sports content, every day is a moment to make a difference to partners and to hundreds of millions of people around the world.

A few reasons why we think you’d love working for Disney Entertainment & ESPN Technology

  • Building the future of Disney’s media business:DE&E Technologists are designing and building the infrastructure that will power Disney’s media, advertising, and distribution businesses for years to come.

  • Reach & Scale:The products and platforms this group builds and operates delight millions of consumers every minute of every day – from Disney+ and Hulu, to ABC News and Entertainment, to ESPN and ESPN+, and much more.

  • Innovation:We develop and execute groundbreaking products and techniques that shape industry norms and enhance how audiences experience sports, entertainment & news.

About The Role

Subscriber Data Solutions builds and maintains best in class data products enabling business teams to analyze and measure subscriber movements and support revenue generation initiatives. The Lead Data Engineer will contribute to the Company’s success by partnering with business, analytics and infrastructure teams to design and build data pipelines to facilitate measuring subscriber movements and metrics. Collaborating across disciplines, they will identify internal/external data sources, design table structure, define ETL strategy & automated Data Quality checks. You will also help mentor and guide other more junior data engineers in their data pipeline development.

Responsibilities

  • Lead the successful design and implementation of complex technical problems.

  • Lead and contribute to the design and growth of our Data Products and Data Warehouses around Subscriber movements and metrics.

  • Use sophisticated analytical thought to exercise judgement and identify innovative solutions.

  • Partner with technical and non-technical colleagues to understand data and reporting requirements, and collaborate with Data Product Managers, Data Architects and other Data Engineers to design, implement, and deliver successful data solutions.

  • Design table structures and define ETL pipelines to build performant Data solutions that are reliable and scalable in a fast growing data ecosystem.

  • Develop Data Quality checks.

  • Develop and maintain ETL routines using ETL and orchestration tools such as Airflow.

  • Serve as an advanced resource to other Data Engineers on the team, and mentor and coach more junior members of the team helping to improve their skills, knowledge, and productivity.

Basic Requirements

  • 7+ years of data engineering experience developing large data pipelines.

  • Strong understanding of data modeling principles including Dimensional modeling and data normalization principles.

  • Good understanding of SQL Engines and able to conduct advanced performance tuning.

  • Ability to think strategically, analyze and interpret market and consumer information.

  • Strong communication skills – written and verbal presentations.

  • Excellent conceptual and analytical reasoning competencies.

  • Comfortable working in a fast-paced and highly collaborative environment.

  • Familiarity with Agile Scrum principles and ceremonies.

Preferred Qualifications

  • 4+ years of work experience implementing and reporting on business key performance indicators in data warehousing environments, required.

  • 5+ years of experience using analytic SQL, working with traditional relational databases and/or distributed systems (Snowflake or Redshift), required.

  • 3+ years of experience programming languages (e.g. Python, Pyspark), preferred.

  • 3+ years of experience with data orchestration/ETL tools (Airflow, Nifi), preferred.

  • Experience with Snowflake, Databricks/EMR/Spark & Airflow a plus.

Required Education

  • Bachelor’s degree in Computer Science, Information Systems, Software, Electrical or Electronics Engineering, or comparable field of study, and/or equivalent work experience.

  • Master’s Degree a plus.

Additional Information

#DISNEYTECH


The hiring range for this position in Santa Monica, California is $152,200 to $204,100 per year, in Seattle, Washington is $159,500 to $213,900 per year, in New York City, NY is $159,500 to $213,900 per year, and in San Francisco, California is $166,800 to $223,600 per year. The base pay actually offered will take into account internal equity and may vary depending on the candidate’s geographic region, job-related knowledge, skills, and experience among other factors. A bonus and/or long-term incentive units may be provided as part of the compensation package, in addition to the full range of medical, financial, and/or other benefits, dependent on the level and position offered.

#J-18808-Ljbffr

Related Jobs

View all jobs

Lead Data Engineer

Lead Data Engineer

Lead Data Engineer

Lead Data Engineer

Lead Data Engineer

Lead Data Engineer

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Common Pitfalls Data Science Job Seekers Face and How to Avoid Them

Data science has become a linchpin for decision-making and innovation across countless industries, from finance and healthcare to tech and retail. The demand for data scientists in the UK continues to climb, with businesses seeking professionals who can interpret complex datasets, build predictive models, and communicate actionable insights. Despite this high demand, the job market can be extremely competitive—and many applicants unknowingly fall into avoidable traps. Whether you’re an aspiring data scientist fresh out of university, a professional transitioning from a quantitative role, or a seasoned analyst looking to expand your skill set, it’s crucial to navigate your job search effectively. In this article, we explore the most common pitfalls data science job seekers face and provide pragmatic advice to help you stand out. By refining your CV, portfolio, interview strategies, and communication skills, you can significantly increase your chances of landing a rewarding data science role. If you’re looking for your next data science job in the UK, don’t forget to explore the listings at Data Science Jobs. Read on to discover how to avoid critical mistakes and position yourself for success.

Career Paths in Data Science: From Entry-Level Analysis to Leadership and Beyond

Data is the lifeblood of modern business, and Data Scientists are the experts who turn raw information into strategic insights. From building recommendation engines to predicting market trends, the impact of data science extends across virtually every industry—finance, healthcare, retail, manufacturing, and beyond. In the UK, data-driven decision-making is critical to remaining competitive in a global market, making data science one of the most sought-after career paths. But how does one launch a career in data science, and how can professionals progress from entry-level analysts to senior leadership roles? In this comprehensive guide, we’ll explore the typical career trajectory, from junior data scientist to chief data officer, discussing the key skills, qualifications, and strategic moves you need to succeed. Whether you’re a recent graduate, transitioning from another technical field, or an experienced data scientist aiming for management, you’ll find actionable insights on forging a successful career in the UK data science sector.

Job-Hunting During Economic Uncertainty: Data Science Edition

Data science has become essential for modern businesses, enabling data-driven decisions that enhance efficiency, profitability, and strategic foresight. From predictive analytics in finance to recommendation engines in retail, data scientists sit at the crossroads of statistics, programming, and domain expertise, building models that translate raw information into tangible insights. Yet, when broader economic forces create uncertainty—through market downturns, shifting investor priorities, or internal budget constraints—data science roles can experience increased scrutiny, competition, and extended hiring cycles. Despite these pressures, data-driven approaches remain crucial to organizations looking to weather challenges and find opportunities in volatile environments. Whether you’re refining advanced machine learning techniques, fine-tuning data pipelines, or collaborating with business stakeholders on dashboards, your skill set is often still in demand. The key is adapting your job search strategy and personal branding to cut through the noise when fewer roles may be available. This article explores: Why economic headwinds affect data science hiring. Actionable strategies to stand out in a tighter job market. Ways to emphasize your technical and soft skills effectively. Techniques to maintain focus and resilience despite potential setbacks. How www.datascience-jobs.co.uk can help you secure the ideal data science position. By combining strategic thinking, polished communications, and adaptability, you can land a fulfilling data science role that leverages your expertise—even if the market feels more demanding.