Lead AI Data Engineer

Planna Ltd.
London
1 week ago
Applications closed

Related Jobs

View all jobs

Lead Data Engineer

Consultant - Manager, Data Engineer, AI & Data, Defence & Security

Consultant - Manager, Data Engineer, AI & Data, Defence & Security

AI & Data Ethics Technical Lead

AI & Data Ethics Technical Lead

AI & Data Ethics Technical Lead

Location: London or Cardiff, UK (Hybrid/Flexible)Salary: £80,000 – £90,000 DOE (Plus equity options)

About Us

We are a proptech company at the forefront of AI and data innovation, partnering with leading insurance firms and major banks to deliver intelligent, scalable solutions for the property sector. Our work blends deep technical expertise with the reliability, security, and compliance required by highly regulated industries.

We design and build systems that collect, integrate, and process hundreds of data sources — from live APIs and large-scale web crawls to internal datasets — and connect them to cutting-edge AI models, including fine-tuned LLMs and retrieval-augmented generation (RAG) pipelines. Our solutions enable smarter property decisions, faster operations, and better customer outcomes for both the financial services and property sectors.

Key Responsibilities

Data Acquisition & Integration

  • Design, implement, and operate pipelines ingesting and normalising data from APIs, databases, web crawlers, and file imports.
  • Architect secure, scalable web crawling and data ingestion systems suitable for regulated environments.

AI Development & RAG Implementation

  • Prepare, clean, and structure datasets for fine-tuning LLMs and retrieval-based workflows.
  • Design, implement, and optimise RAG pipelines using vector databases, embeddings, and semantic search to connect real-time and historical data to LLMs.
  • Deploy, evaluate, and refine AI agents using GPU-enabled cloud infrastructure.
  • Build and maintain prompt engineering and evaluation frameworks for enterprise-grade AI applications.
  • Lead the end-to-end architecture for AI data ingestion, processing, and retrieval workflows with a focus on security, compliance, and scalability.
  • Mentor engineers and data scientists, promoting best practices for AI in regulated industries.

Insights & Automation

  • Automate extraction of technical and business insights from large datasets for property and financial services use cases.
  • Optimise performance and cost-efficiency of compute and retrieval operations.

Required Skills & Experience

  • Proven experience designing and maintaining complex data pipelines from multiple sources.
  • Strong expertise in large-scale web crawling & scraping.
  • Proficiency in Python and one or more of: Node.js, Go, Java.
  • Deep experience in RAG — from embeddings and vector database design to semantic search optimisation and retrieval integration with LLMs.
  • Experience with LLM fine-tuning and evaluation.
  • Hands-on experience with GPU cloud platforms for model training and inference.
  • Understanding of data security, privacy, and compliance in regulated industries.
  • Database knowledge across SQL, NoSQL, and document stores.
  • Familiarity with ETL/ELT frameworks and distributed data processing.
  • Ability to lead complex technical projects and mentor other engineers.

Nice-to-Have Skills

  • Experience with LangChain, LlamaIndex, or other RAG orchestration frameworks.
  • Familiarity with model evaluation tools.
  • Background in proptech, insurance, or financial services data ecosystems.
  • Exposure to MLOps pipelines for continuous AI delivery in enterprise environments.

What We Offer

  • Flexible, hybrid working arrangements.
  • Opportunity to deliver high-impact AI solutions for the property and financial services sectors.
  • Culture of innovation combined with enterprise-grade quality and governance.

Apply to with your CV and a short description of your most impactful RAG or AI pipeline project.


#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Maths for Data Science Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are applying for data science jobs in the UK, the maths can feel like a moving target. Job descriptions say “strong statistical knowledge” or “solid ML fundamentals” but they rarely tell you which topics you will actually use day to day. Here’s the truth: most UK data science roles do not require advanced pure maths. What they do require is confidence with a tight set of practical topics that come up repeatedly in modelling, experimentation, forecasting, evaluation, stakeholder comms & decision-making. This guide focuses on the only maths most data scientists keep using: Statistics for decision making (confidence intervals, hypothesis tests, power, uncertainty) Probability for real-world data (base rates, noise, sampling, Bayesian intuition) Linear algebra essentials (vectors, matrices, projections, PCA intuition) Calculus & gradients (enough to understand optimisation & backprop) Optimisation & model evaluation (loss functions, cross-validation, metrics, thresholds) You’ll also get a 6-week plan, portfolio projects & a resources section you can follow without getting pulled into unnecessary theory.

Neurodiversity in Data Science Careers: Turning Different Thinking into a Superpower

Data science is all about turning messy, real-world information into decisions, products & insights. It sits at the crossroads of maths, coding, business & communication – which means it needs people who see patterns, ask unusual questions & challenge assumptions. That makes data science a natural fit for many neurodivergent people, including those with ADHD, autism & dyslexia. If you’re neurodivergent & thinking about a data science career, you might have heard comments like “you’re too distracted for complex analysis”, “too literal for stakeholder work” or “too disorganised for large projects”. In reality, the same traits that can make traditional environments difficult often line up beautifully with data science work. This guide is written for data science job seekers in the UK. We’ll explore: What neurodiversity means in a data science context How ADHD, autism & dyslexia strengths map to common data science roles Practical workplace adjustments you can request under UK law How to talk about your neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in data science – & how to turn “different thinking” into a real career advantage.

Data Science Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK data science hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise rigorous problem framing, high‑quality analytics & modelling, experiment/causality, production awareness (MLOps), governance/ethics, and measurable product or commercial impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for product/data scientists, applied ML scientists, decision scientists, econometricians, growth/marketing analysts, and ML‑adjacent data scientists supporting LLM/AI products. Who this is for: Product/decision/data scientists, applied ML scientists, econometrics & causal inference specialists, experimentation leads, analytics engineers crossing into DS, ML generalists with strong statistics, and data scientists collaborating with platform/MLOps teams in the UK.