Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Lead AI Data Engineer

Planna Ltd.
London
1 month ago
Create job alert

Location: London or Cardiff, UK (Hybrid/Flexible)Salary: £80,000 – £90,000 DOE (Plus equity options)

About Us

We are a proptech company at the forefront of AI and data innovation, partnering with leading insurance firms and major banks to deliver intelligent, scalable solutions for the property sector. Our work blends deep technical expertise with the reliability, security, and compliance required by highly regulated industries.

We design and build systems that collect, integrate, and process hundreds of data sources — from live APIs and large-scale web crawls to internal datasets — and connect them to cutting-edge AI models, including fine-tuned LLMs and retrieval-augmented generation (RAG) pipelines. Our solutions enable smarter property decisions, faster operations, and better customer outcomes for both the financial services and property sectors.

Key Responsibilities

Data Acquisition & Integration

  • Design, implement, and operate pipelines ingesting and normalising data from APIs, databases, web crawlers, and file imports.
  • Architect secure, scalable web crawling and data ingestion systems suitable for regulated environments.

AI Development & RAG Implementation

  • Prepare, clean, and structure datasets for fine-tuning LLMs and retrieval-based workflows.
  • Design, implement, and optimise RAG pipelines using vector databases, embeddings, and semantic search to connect real-time and historical data to LLMs.
  • Deploy, evaluate, and refine AI agents using GPU-enabled cloud infrastructure.
  • Build and maintain prompt engineering and evaluation frameworks for enterprise-grade AI applications.
  • Lead the end-to-end architecture for AI data ingestion, processing, and retrieval workflows with a focus on security, compliance, and scalability.
  • Mentor engineers and data scientists, promoting best practices for AI in regulated industries.

Insights & Automation

  • Automate extraction of technical and business insights from large datasets for property and financial services use cases.
  • Optimise performance and cost-efficiency of compute and retrieval operations.

Required Skills & Experience

  • Proven experience designing and maintaining complex data pipelines from multiple sources.
  • Strong expertise in large-scale web crawling & scraping.
  • Proficiency in Python and one or more of: Node.js, Go, Java.
  • Deep experience in RAG — from embeddings and vector database design to semantic search optimisation and retrieval integration with LLMs.
  • Experience with LLM fine-tuning and evaluation.
  • Hands-on experience with GPU cloud platforms for model training and inference.
  • Understanding of data security, privacy, and compliance in regulated industries.
  • Database knowledge across SQL, NoSQL, and document stores.
  • Familiarity with ETL/ELT frameworks and distributed data processing.
  • Ability to lead complex technical projects and mentor other engineers.

Nice-to-Have Skills

  • Experience with LangChain, LlamaIndex, or other RAG orchestration frameworks.
  • Familiarity with model evaluation tools.
  • Background in proptech, insurance, or financial services data ecosystems.
  • Exposure to MLOps pipelines for continuous AI delivery in enterprise environments.

What We Offer

  • Flexible, hybrid working arrangements.
  • Opportunity to deliver high-impact AI solutions for the property and financial services sectors.
  • Culture of innovation combined with enterprise-grade quality and governance.

Apply to with your CV and a short description of your most impactful RAG or AI pipeline project.


#J-18808-Ljbffr

Related Jobs

View all jobs

Lead AI Data Engineer

Lead AI/ML Data Engineer

Forensic Data Analytics Manager

Forensic Data Analytics Manager

Senior Director AI & Data Governance

Data Architect

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK data science hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise rigorous problem framing, high‑quality analytics & modelling, experiment/causality, production awareness (MLOps), governance/ethics, and measurable product or commercial impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for product/data scientists, applied ML scientists, decision scientists, econometricians, growth/marketing analysts, and ML‑adjacent data scientists supporting LLM/AI products. Who this is for: Product/decision/data scientists, applied ML scientists, econometrics & causal inference specialists, experimentation leads, analytics engineers crossing into DS, ML generalists with strong statistics, and data scientists collaborating with platform/MLOps teams in the UK.

Why Data Science Careers in the UK Are Becoming More Multidisciplinary

Data science once meant advanced statistics, machine learning models and coding in Python or R. In the UK today, it has become one of the most in-demand professions across sectors — from healthcare to finance, retail to government. But as the field matures, employers now expect more than technical modelling skills. Modern data science is multidisciplinary. It requires not just coding and algorithms, but also legal knowledge, ethical reasoning, psychological insight, linguistic clarity and human-centred design. Data scientists are expected to interpret, communicate and apply data responsibly, with awareness of law, human behaviour and accessibility. In this article, we’ll explore why data science careers in the UK are becoming more multidisciplinary, how these five disciplines intersect with data science, and what job-seekers & employers need to know to succeed in this transformed field.

Data Science Team Structures Explained: Who Does What in a Modern Data Science Department

Data science is one of the most in-demand, dynamic, and multidisciplinary areas in the UK tech and business landscape. Organisations from finance, retail, health, government, and beyond are using data to drive decisions, automate processes, personalise services, predict trends, detect fraud, and more. To do that well, companies don’t just need good data scientists; they need teams with clearly defined roles, responsibilities, workflows, collaboration, and governance. If you're aiming for a role in data science or recruiting for one, understanding the structure of a data science department—and who does what—can make all the difference. This article breaks down the key roles, how they interact across the lifecycle of a data science project, what skills and qualifications are typical in the UK, expected salary ranges, challenges, trends, and how to build or grow an effective team.