Junior / Mid Level Data Engineer - Inside IR35 - SC Cleared

East Walworth
3 days ago
Create job alert

Junior / Mid Level Data Engineer - SC Cleared
Inside IR35: £450 - £500 per day
Hybrid: Once a week in London
Start date: 5th Jan

We are supporting a major government data transformation initiative focused on strengthening the use of evidence-based insights across frontline and operational teams. As part of a new capability being built to process and analyse sensitive interview information, the programme requires a SFIA 3 (Junior - Mid Level) Data Engineer to design, deliver, and optimise secure backend data workflows.

This work is foundational: building the ingestion, orchestration, storage, and transformation layers that power the analytics tool.

The programme is just kicking off, and this is a great time to join, add value, and grow throughout a long-term programme.

Key Responsibilities
• Design, develop and maintain scalable cloud-native data pipelines
• Implement ETL/ELT processes to manage structured and unstructured data securely and efficiently
• Ensure data integrity, traceability and compliance across all pipeline stages
• Work with cross-functional teams to define technical requirements and design decisions
• Apply DevOps best practices, monitoring, and automation to improve reliability
• Support continuous improvement of the platform’s performance and operational maturity
• Communicate progress, risks and trade-offs clearly to wider delivery stakeholders

Required Skills & Experience
• Strong Data Engineering experience within AWS environments
• Hands-on experience with core AWS data services:
 – S3, Glue, Lambda, Athena, Kinesis, Step Functions (or similar)
• Proficiency in Python and SQL for data transformations and automation
• Experience with IaC and CI/CD tooling (Terraform, GitLab, etc.)
• Comfortable working with sensitive datasets and secure-by-design approaches
• Strong communication skills and a proactive, consulting mindset

Related Jobs

View all jobs

Data Architect

Lead Data Engineer

Lead Data Engineer

Lead Data Engineer

Lead Data Engineer

Lead Data Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Neurodiversity in Data Science Careers: Turning Different Thinking into a Superpower

Data science is all about turning messy, real-world information into decisions, products & insights. It sits at the crossroads of maths, coding, business & communication – which means it needs people who see patterns, ask unusual questions & challenge assumptions. That makes data science a natural fit for many neurodivergent people, including those with ADHD, autism & dyslexia. If you’re neurodivergent & thinking about a data science career, you might have heard comments like “you’re too distracted for complex analysis”, “too literal for stakeholder work” or “too disorganised for large projects”. In reality, the same traits that can make traditional environments difficult often line up beautifully with data science work. This guide is written for data science job seekers in the UK. We’ll explore: What neurodiversity means in a data science context How ADHD, autism & dyslexia strengths map to common data science roles Practical workplace adjustments you can request under UK law How to talk about your neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in data science – & how to turn “different thinking” into a real career advantage.

Data Science Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK data science hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise rigorous problem framing, high‑quality analytics & modelling, experiment/causality, production awareness (MLOps), governance/ethics, and measurable product or commercial impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for product/data scientists, applied ML scientists, decision scientists, econometricians, growth/marketing analysts, and ML‑adjacent data scientists supporting LLM/AI products. Who this is for: Product/decision/data scientists, applied ML scientists, econometrics & causal inference specialists, experimentation leads, analytics engineers crossing into DS, ML generalists with strong statistics, and data scientists collaborating with platform/MLOps teams in the UK.

Why Data Science Careers in the UK Are Becoming More Multidisciplinary

Data science once meant advanced statistics, machine learning models and coding in Python or R. In the UK today, it has become one of the most in-demand professions across sectors — from healthcare to finance, retail to government. But as the field matures, employers now expect more than technical modelling skills. Modern data science is multidisciplinary. It requires not just coding and algorithms, but also legal knowledge, ethical reasoning, psychological insight, linguistic clarity and human-centred design. Data scientists are expected to interpret, communicate and apply data responsibly, with awareness of law, human behaviour and accessibility. In this article, we’ll explore why data science careers in the UK are becoming more multidisciplinary, how these five disciplines intersect with data science, and what job-seekers & employers need to know to succeed in this transformed field.