Junior Data Scientist - AI Practice Team

American Bureau of Shipping
Warrington
3 weeks ago
Create job alert

ABS is seeking an exceptional Junior Data Scientist to join us full-time on our Artificial Intelligence (AI) Practice Team, Europe. In this role, you will support AI consulting engagements focused on policy, data, and document-centric solutions by preparing, analyzing, and modeling client data as part of a multidisciplinary delivery team. Working closely with senior data scientists, consultants, and domain experts, you will help turn real-world datasets into actionable insights, features, and reusable assets that underpin our AI solutions. Based in Warrington or London, England with some remote flexibility, you will gain exposure to modern AI, data tooling, and industrial use cases while building robust, production-aware analytics skills.


What You Will Do

  • Support AI consulting engagements by cleaning, structuring, and analyzing client data (tabular, time-series, and document-based) to enable modeling and insight generation.
  • Contribute to development, testing, and documentation of machine learning models, analytics pipelines, and proof-of-concept solutions under guidance from senior data scientists.
  • Work with our document and data services to extract, transform, and enrich information from reports, PDFs, logs, and other unstructured sources using NLP and related techniques.
  • Build and maintain basic dashboards, reports, and visualizations (e.g., in Python, Power BI, or similar tools) to communicate findings to consultants and client stakeholders.
  • Collaborate with consultants and domain experts to translate business questions into analytical tasks, validate results, and refine approaches based on feedback.
  • Help maintain clean, reproducible project assets (code, notebooks, datasets, documentation) using modern collaboration and version control tools.

What You Will Need
Education and Experience

  • Bachelor’s degree in a STEM discipline (e.g., Data Science, Computer Science, Engineering, Mathematics, Statistics) or related field, or equivalent practical experience.
  • 2+ years of combined experience through projects, internships, or professional roles applying data science/ML methods and tools.
  • Practical experience applying core techniques in data preprocessing, modeling, and evaluation using Python, SQL, and common ML libraries.
  • Exposure to AI/ML or analytics projects in academic, research, or professional environments, ideally with real-world or messy datasets.
  • Familiarity with cloud-based and modern data platforms (e.g., Azure, AWS, GCP, Databricks) and BI tools is a plus but not mandatory.

Knowledge, Skills, and Abilities

  • Strong foundation in data science/ML concepts and statistics, with hands‑on experience in Python (e.g., pandas, scikit‑learn) and working with SQL-based data sources.
  • Ability to clean, structure, and analyze real-world datasets, including unstructured or semi-structured data (e.g., documents, logs, text).
  • Comfortable working with Jupyter notebooks and Git‑based workflows for reproducible and version‑controlled analysis.
  • Clear, structured communication skills, including the ability to explain analytical work and findings to non-technical stakeholders in a concise, business‑relevant way.
  • Collaborative mindset and willingness to learn, taking feedback from senior team members and adapting quickly to new tools, methods, and domains.
  • Organized, detail‑oriented working style, with the ability to manage tasks across multiple projects and meet deadlines reliably.
  • Must hold a valid right to work status in the UK.

Nice to Have

  • Experience applying ML/NLP to real datasets (e.g., classification, forecasting, document information extraction, OCR, LLMs, or search/retrieval systems).
  • Exposure to cloud platforms (Azure/AWS/GCP), ML tooling (e.g., Databricks, MLflow, Docker), and BI/visualization tools (Power BI, Tableau).
  • Any exposure to industrial, maritime, or asset‑intensive domains, or to consulting/client‑facing environments.

Reporting Relationships

Thiis role reports to the Senior Data Scientist and does not include direct reports.


#J-18808-Ljbffr

Related Jobs

View all jobs

Junior Data Scientist

Junior Data Scientist

Junior Data Scientist - AI Practice Team

Junior Data Scientist: ML & Insights for Impact

Junior AI Data Scientist - Practice Team (Remote-Friendly)

Junior Data Engineer: Multi-Cloud & ML in Leeds

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

What Hiring Managers Look for First in Data Science Job Applications (UK Guide)

If you’re applying for data science roles in the UK, it’s crucial to understand what hiring managers focus on before they dive into your full CV. In competitive markets, recruiters and hiring managers often make their first decisions in the first 10–20 seconds of scanning an application — and in data science, there are specific signals they look for first. Data science isn’t just about coding or statistics — it’s about producing insights, shipping models, collaborating with teams, and solving real business problems. This guide helps you understand exactly what hiring managers look for first in data science applications — and how to structure your CV, portfolio and cover letter so you leap to the top of the shortlist.

The Skills Gap in Data Science Jobs: What Universities Aren’t Teaching

Data science has become one of the most visible and sought-after careers in the UK technology market. From financial services and retail to healthcare, media, government and sport, organisations increasingly rely on data scientists to extract insight, guide decisions and build predictive models. Universities have responded quickly. Degrees in data science, analytics and artificial intelligence have expanded rapidly, and many computer science courses now include data-focused pathways. And yet, despite the volume of graduates entering the market, employers across the UK consistently report the same problem: Many data science candidates are not job-ready. Vacancies remain open. Hiring processes drag on. Candidates with impressive academic backgrounds fail interviews or struggle once hired. The issue is not intelligence or effort. It is a persistent skills gap between university education and real-world data science roles. This article explores that gap in depth: what universities teach well, what they often miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in data science.

Data Science Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Thinking about switching into data science in your 30s, 40s or 50s? You’re far from alone. Across the UK, businesses are investing in data science talent to turn data into insight, support better decisions and unlock competitive advantage. But with all the hype about machine learning, Python, AI and data unicorns, it can be hard to separate real opportunities from noise. This article gives you a practical, UK-focused reality check on data science careers for mid-life career switchers — what roles really exist, what skills employers really hire for, how long retraining typically takes, what UK recruiters actually look for and how to craft a compelling career pivot story. Whether you come from finance, marketing, operations, research, project management or another field entirely, there are meaningful pathways into data science — and age itself is not the barrier many people fear.