Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Intelligence Data Analyst

Cifas
London
3 weeks ago
Create job alert
Overview

Cifas is the UK’s leading fraud prevention service, managing the largest database of fraudulent conduct in the country. Our members are organisations from all sectors, sharing data across sectors to reduce fraud and financial crime. As a not-for-profit, our mission is to fight fraud rather than generate profits for shareholders.

Fraud presents a serious and significant threat to the UK. Our role is to protect businesses, the public and the economy from fraud, and we have ambitious plans to innovate and create new services and products that will improve how we tackle fraud.

Our employees play a crucial part in ensuring we remain the UK's leading fraud prevention service, with our members at the heart of everything we do.

The Role

We are seeking a highly analytical and detail-oriented Data Analyst to join our Intelligence team. This role offers an opportunity to provide technical leadership and subject matter expertise in transforming complex data into actionable intelligence. Working within the Microsoft Fabric ecosystem, including Power BI, you will support data-driven decision-making that enables our members to detect and prevent fraud and financial crime. Your insights will inform strategic initiatives and policy development to mitigate fraud across the financial landscape.

Key Responsibilities
  • Leading on the design, development, and maintenance of analytical intelligence products and services using Power BI reports and dashboards integrated with Microsoft Fabric. Collaborating with stakeholders to gather requirements and translate them into technical specifications.
  • Establishing and maintaining a regular flow of actionable data-driven intelligence for Cifas members and other stakeholders, establishing Cifas as a go-to source of fraud-related research and intelligence for external partners such as law enforcement.
  • Performing data extraction, transformation, and loading (ETL) processes using SQL and Fabric components.
  • Leading the development of strategy and processes to enable geospatial analysis and mapping in relation to core datasets (National Fraud Database and Intelligence Service Database) to support intelligence and strategic initiatives.
  • Documenting analytical processes, methodologies, and findings for transparency and reproducibility.
  • Supporting the development and quality assurance of data-driven intelligence products and services to members and key partners by ensuring data accuracy and integrity through rigorous validation and testing.
  • Staying updated with the latest features and best practices in Microsoft Fabric and Power BI.
  • Supporting responses to intelligence requirements from external partners (e.g. NFIB, NCA) to inform the intelligence picture of priority areas and maintain Cifas’ reputation as a leading organisation for fraud-related intelligence.
  • Supporting the delivery of annual assessments (such as the Strategic Intelligence Assessment and Fraudscape).
Skills, Knowledge and Expertise

To be successful in this role, you will have:

  • A degree level education or equivalent in data science, computer science, information systems or related field and/or relevant prior work experience.
  • Microsoft certifications related to Power BI or Microsoft Fabric. Experience with Fabric at an intermediate level is a prerequisite for the role.
  • Proven experience as a Data Analyst, with familiarity with data modelling techniques and best practices and a strong portfolio of Power BI projects.
  • Proficiency in SQL for data manipulation and analysis.
  • Experience with Microsoft Fabric components, including Data Factory, Lakehouse, and Data Warehouse.
  • Experience with GIS software and tools for mapping and geospatial analysis.
  • Strong analytical and problem-solving skills.
  • Experience with Python or R for data analysis is preferred.
  • Ideally knowledge of data governance and security principles.
  • Experience of working in intelligence analysis within a fraud or financial crime environment.
  • Experience and knowledge of the fraud and financial crime landscape and the principles of fraud prevention and Data Protection legislation in this environment.
  • High levels of diligence, excellent communication skills, and the ability to collaborate while working autonomously or in a team.

Cifas are unable to offer visa sponsorship or work permits.

Benefits
  • Remote working with approximately 2 days a month in the London office.
  • Generous annual leave allowance plus bank holidays.
  • Excellent pension package through salary sacrifice.
  • Personal and professional growth.
  • Employee wellbeing services – Wellbeing hub access with resources for online exercise content, meditation guides, sleep stories and yoga.

We have introduced agile ways of working, allowing teams to decide how best they work, while ensuring regular opportunities to collaborate and innovate. We are committed to building a diverse and inclusive culture with inclusion champions and volunteering initiatives as part of our CSR. We are recognised in the 2021, 2022 and 2024 best companies to work for listings and hold Investors In People Gold accreditation.

Seniority level
  • Associate
Employment type
  • Full-time
Job function
  • Information Technology

Cifas are unable to offer visa sponsorship or work permits.


#J-18808-Ljbffr

Related Jobs

View all jobs

Business Intelligence Analyst

Data Analyst, Business Intelligence Data Analyst

Lead Data Analyst

Lead Data Analyst

Lead Data Analyst

Senior Data Analyst Finance

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Why Data Science Careers in the UK Are Becoming More Multidisciplinary

Data science once meant advanced statistics, machine learning models and coding in Python or R. In the UK today, it has become one of the most in-demand professions across sectors — from healthcare to finance, retail to government. But as the field matures, employers now expect more than technical modelling skills. Modern data science is multidisciplinary. It requires not just coding and algorithms, but also legal knowledge, ethical reasoning, psychological insight, linguistic clarity and human-centred design. Data scientists are expected to interpret, communicate and apply data responsibly, with awareness of law, human behaviour and accessibility. In this article, we’ll explore why data science careers in the UK are becoming more multidisciplinary, how these five disciplines intersect with data science, and what job-seekers & employers need to know to succeed in this transformed field.

Data Science Team Structures Explained: Who Does What in a Modern Data Science Department

Data science is one of the most in-demand, dynamic, and multidisciplinary areas in the UK tech and business landscape. Organisations from finance, retail, health, government, and beyond are using data to drive decisions, automate processes, personalise services, predict trends, detect fraud, and more. To do that well, companies don’t just need good data scientists; they need teams with clearly defined roles, responsibilities, workflows, collaboration, and governance. If you're aiming for a role in data science or recruiting for one, understanding the structure of a data science department—and who does what—can make all the difference. This article breaks down the key roles, how they interact across the lifecycle of a data science project, what skills and qualifications are typical in the UK, expected salary ranges, challenges, trends, and how to build or grow an effective team.

Why the UK Could Be the World’s Next Data Science Jobs Hub

Data science is arguably the most transformative technological field of the 21st century. From powering artificial intelligence algorithms to enabling complex business decisions, data science is essential across sectors. As organisations leverage data more rapidly—from retailers predicting customer behaviour to health providers diagnosing conditions—demand for proficiency in data science continues to surge. The United Kingdom is particularly well-positioned to become a global data science jobs hub. With world-class universities, a strong tech sector, growing AI infrastructure, and supportive policy environments, the UK is poised for growth. This article delves into why the UK could emerge as a leading destination for data science careers, explores the job market’s current state, outlines future opportunities, highlights challenges, and charts what must happen to realise this vision.