Head of Data Science Engineering (Basé à London)

Jobleads
Greater London
2 weeks ago
Create job alert

Job Description

An exciting opportunity has arisen for an experienced data leader to drive innovation and enhance data-driven decision-making at a leading private equity firm. This role will spearhead the development of cutting-edge data solutions, leveraging advanced analytics, predictive modeling, and machine learning to optimize investment strategies and operational efficiency.

The Role

As Head of Data , you will be responsible for shaping and executing the firm’s data strategy, working closely with stakeholders across technology, investment, and transformation teams.

Your expertise in data engineering, analytics, and machine learning will play a pivotal role in building scalable data solutions, refining governance frameworks, and enhancing analytical capabilities.

Key Responsibilities

  • Collaborate with senior leadership to refine and implement the firm’s data science strategy, aligning it with broader business priorities.
  • Design and develop data platforms, pipelines, and analytical tools that support investment decision-making and risk management.
  • Drive innovation by applying advanced machine learning techniques, AI, and predictive modeling to private markets investment challenges.
  • Oversee data governance, ensuring high-quality, structured, and unstructured data is effectively managed and utilized.
  • Enhance reporting and analytics capabilities, creating intuitive dashboards and user-centric analytical solutions.
  • Lead a high-performing data team, providing mentorship, professional development, and fostering a culture of continuous improvement.
  • Monitor industry trends, regulatory developments, and emerging technologies to keep the firm at the forefront of data innovation.
  • Establish KPIs to measure the success of data initiatives and provide insights to senior leadership.

Requirements

  • Experience in data science, data engineering, or analytics, ideally within investment management, financial services, or private markets.
  • Strong technical expertise in data architecture, data lakes, and cloud platforms, including experience with machine learning frameworks (TensorFlow, PyTorch, Hugging Face) and big data processing (Spark, Synapse).
  • Proven track record of leading high-performing teams and driving data-led transformation within a complex organization.
  • Strong strategic mindset with the ability to translate data insights into actionable business outcomes.
  • Excellent communication skills, with the ability to influence senior stakeholders and drive cross-functional collaboration.

This is a unique opportunity to shape the future of data science and engineering within a dynamic investment environment. If you’re a forward-thinking data leader looking to make a meaningful impact, I’d love to hear from you.

#J-18808-Ljbffr

Related Jobs

View all jobs

Head of Data Engineering & Architecture FullTime London (Basé à London)

Head of Data Engineering & Architecture FullTime London (Basé à London)

Head of Data FTC

Head of Data & AI

Databricks Tech Lead

Principal Data Scientist - NLP

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Jobs for Non‑Technical Professionals: Where Do You Fit In?

Beyond Jupyter Notebooks Ask most people what a data‑science career looks like and they’ll picture Python wizards optimising XGBoost hyper‑parameters. The truth? Britain’s data‑driven firms need storytellers, strategists, ethicists and project leaders every bit as much as they need statisticians. The Open Data Institute’s UK Data Skills Gap 2024 places demand for non‑technical data talent at 42 % of all data‑science vacancies—roles focused on turning model outputs into business value and trustworthy decisions. This guide highlights the fastest‑growing non‑coding roles, the transferable skills many professionals already have, and a 90‑day action plan to land a data‑science job—no pandas required.

McKinsey & Company Data‑Science Jobs in 2025: Your Complete UK Guide to Turning Data into Impact

When CEOs need to unlock billion‑pound efficiencies or launch AI‑first products, they often call McKinsey & Company. What many graduates don’t realise is that behind every famous strategy deck sits a global network of data scientists, engineers and AI practitioners—unified under QuantumBlack, AI by McKinsey. From optimising Formula One pit stops to reducing NHS wait times, McKinsey’s analytics teams turn messy data into operational gold. With the launch of the McKinsey AI Studio in late 2024 and sustained demand for GenAI strategy, the firm is growing its UK analytics headcount faster than ever. The McKinsey careers portal lists 350+ open analytics roles worldwide, over 120 in the UK, spanning data science, machine‑learning engineering, data engineering, product management and AI consulting. Whether you love Python notebooks, Airflow DAGs, or white‑boarding an LLM governance roadmap for a FTSE 100 board, this guide details how to land a McKinsey data‑science job in 2025.

Data Science vs. Data Mining vs. Business Intelligence Jobs: Which Path Should You Choose?

Data Science has evolved into one of the most popular and transformative professions of the 21st century. Yet as the demand for data-related roles expands, other fields—such as Data Mining and Business Intelligence (BI)—are also thriving. With so many data-centric career options available, it can be challenging to determine where your skills and interests best align. If you’re browsing Data Science jobs on www.datascience-jobs.co.uk, you’ve no doubt seen numerous listings that mention machine learning, analytics, or business intelligence. But how does Data Science really differ from Data Mining or Business Intelligence? And which path should you follow? This article demystifies these three interrelated yet distinct fields. We’ll define the core aims of Data Science, Data Mining, and Business Intelligence, highlight where their responsibilities overlap, explore salary ranges, and provide real-world examples of each role in action. By the end, you’ll have a clearer sense of which profession could be your ideal fit—and how to position yourself for success in this ever-evolving data landscape.