Graduate Research Analyst

Cheltenham
9 months ago
Applications closed

Related Jobs

View all jobs

Finance Data Analyst & Modeler (Graduate)

Graduate Data Analyst

Graduate Data Analyst - London

Graduate Data Analyst- Nottingham

Graduate Data Analyst - London

Sr Director Analyst, Data Governance and Cybersecurity (Remote Europe)

Job Title -Graduate Research Analyst

An exciting opportunity for someone with research experience to work in an established project team working on behalf of some of their largest clients.

Responsibilities

  • Review and collate qualitative and quantitative data to produce reports and presentations suitable for the client's needs.
  • Design questionnaires and other necessary research materials for given projects.
  • Execute and manage multinational market research and consulting projects focused on medical technology innovation, product launch and marketing strategy.
  • Work as part of a project team analysing and interpreting qualitative and quantitative market research findings and translating these into actionable strategies for our clients.
  • Develop and be responsible for client reports / project outputs.

    The Candidate
  • Strong analytic and problem-solving skills
  • Capacity & desire to learn a range of analytic skills quickly.
  • Ability to deliver under pressure and to tight deadlines.
  • Relentless attention to detail
  • Ability to work within a team as well as independently.
  • Excellent written & oral communication skills
  • Ability to analyse and interpret market & market research data (Quantitative &
    Qualitative)
  • Produce PowerPoint reports of key insights.

    Central Cheltenham location, excellent starting salary and additional bonus.

    Travail Employment Group Ltd is acting as an Employment Agency in relation to this vacancy

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Thinking about switching into data science in your 30s, 40s or 50s? You’re far from alone. Across the UK, businesses are investing in data science talent to turn data into insight, support better decisions and unlock competitive advantage. But with all the hype about machine learning, Python, AI and data unicorns, it can be hard to separate real opportunities from noise. This article gives you a practical, UK-focused reality check on data science careers for mid-life career switchers — what roles really exist, what skills employers really hire for, how long retraining typically takes, what UK recruiters actually look for and how to craft a compelling career pivot story. Whether you come from finance, marketing, operations, research, project management or another field entirely, there are meaningful pathways into data science — and age itself is not the barrier many people fear.

How to Write a Data Science Job Ad That Attracts the Right People

Data science plays a critical role in how organisations across the UK make decisions, build products and gain competitive advantage. From forecasting and personalisation to risk modelling and experimentation, data scientists help translate data into insight and action. Yet many employers struggle to attract the right data science candidates. Job adverts often generate high volumes of applications, but few applicants have the mix of analytical skill, business understanding and communication ability the role actually requires. At the same time, experienced data scientists skip over adverts that feel vague, inflated or misaligned with real data science work. In most cases, the issue is not a lack of talent — it is the quality and clarity of the job advert. Data scientists are analytical, sceptical of hype and highly selective. A poorly written job ad signals unclear expectations and immature data practices. A well-written one signals credibility, focus and serious intent. This guide explains how to write a data science job ad that attracts the right people, improves applicant quality and positions your organisation as a strong data employer.

Maths for Data Science Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are applying for data science jobs in the UK, the maths can feel like a moving target. Job descriptions say “strong statistical knowledge” or “solid ML fundamentals” but they rarely tell you which topics you will actually use day to day. Here’s the truth: most UK data science roles do not require advanced pure maths. What they do require is confidence with a tight set of practical topics that come up repeatedly in modelling, experimentation, forecasting, evaluation, stakeholder comms & decision-making. This guide focuses on the only maths most data scientists keep using: Statistics for decision making (confidence intervals, hypothesis tests, power, uncertainty) Probability for real-world data (base rates, noise, sampling, Bayesian intuition) Linear algebra essentials (vectors, matrices, projections, PCA intuition) Calculus & gradients (enough to understand optimisation & backprop) Optimisation & model evaluation (loss functions, cross-validation, metrics, thresholds) You’ll also get a 6-week plan, portfolio projects & a resources section you can follow without getting pulled into unnecessary theory.