Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Graduate Fraud Data Analyst

LexisNexis Risk Solutions
City of London
1 week ago
Applications closed

Related Jobs

View all jobs

Graduate Data Analyst (Financial Crime)

Graduate Data Analyst (Financial Crime)

Forensic Data Analytics Graduate Programme - September 2026 intake

Forensic Data Analytics Graduate Programme - September 2026

Graduate Data Analyst | Fast track your career to consultant in 12 months

Graduate Quantitative Analyst (Entry Level)

About the Business: LexisNexis Risk Solutions is the essential partner in the assessment of risk. Within our Business Services vertical, we offer a multitude of solutions focused on helping businesses of all sizes drive higher revenue growth, maximize operational efficiencies, and improve customer experience. Our solutions help our customers solve difficult problems in the areas of Anti-Money Laundering/Counter Terrorist Financing, Identity Authentication & Verification, Fraud and Credit Risk mitigation and Customer Data Management. You can learn more about LexisNexis Risk at the link below, risk.lexisnexis.com


About our Team: You will be part of a team of analysts using global data from the largest real-time fraud detection platform to optimise solutions for our enterprise customers.


About the Role: You will use your experience with data analysis to investigate suspicious behavior. This will provide new insights to customers leading to immediate real-world impact in the form of lower customer friction, reduced fraud losses and as a result, increased customer profitability.

You’ll leverage a real-time platform analyzing billions of transactions per month for some of the largest companies operating in Financial Services, Insurance, e-Commerce, and On-Demand Services. These tools will allow you to attain a unique perspective of the Internet and every persona connected to it. You’ll be continually collaborating with internal product and engineering teams, customer-facing account teams, and external business leaders and risk managers. The comprehensive policy you build will go head-to-head against some of the most motivated attackers in the world to protect billions in revenue.


Responsibilities

  • Conducting in-depth reviews of complex fraud cases. identifying trends and actionable insights, documenting your findings and making clear recommendations on how to mitigate risk
  • Using your SQL and Python skills to increase our customers’ fraud capture. While reducing false positives, conducting offline analysis of customer data to expose patterns and statistically tune policies. Produce executive-level reports and own the end-to-end delivery of your recommendations by writing rules into the ThreatMetrix® decision engine
  • Building dashboards & reports to track value delivered by the solution. Increasing focus on more bespoke external-facing dashboards that surface the most important insights to each customer
  • Using your excellent attention to detail and ability to craft a story through data. Delivering industry-leading presentations for external and executive audiences with non-technical background
  • Scoping, planning, and delivering customer-focused projects including root cause analysis, reports, dashboards, rule mining and health checks. Demonstrate a professional and customer-centric persona when interacting directly with customers via phone, e-mail, and chat
  • Collaborating with ThreatMetrix teams. Including Products, Engineering, Sales and other Professional Services colleagues around the world to continually redefine best practices


Requirements

  • Very good knowledge of Python and SQL (experience with Snowflake highly desirable)
  • Knowledge of BI tools such as Superset, Tableau , PowerBI or similar is desirable
  • Knowledge of orchestration tools such as Airflow, DBT or Google Cloud Dataflow is a bonus
  • Analytical and problem-solving skills, with a deep curiosity for fraud detection
  • Excellent attention to detail to ensure quality of project delivery for customers stands out amongst industry peers
  • Track record of building external and executive reports and presentations
  • Interest or experience in consulting within the risk, fraud or payments industry



Learn more about the LexisNexis Risk team and how we work here

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK data science hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise rigorous problem framing, high‑quality analytics & modelling, experiment/causality, production awareness (MLOps), governance/ethics, and measurable product or commercial impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for product/data scientists, applied ML scientists, decision scientists, econometricians, growth/marketing analysts, and ML‑adjacent data scientists supporting LLM/AI products. Who this is for: Product/decision/data scientists, applied ML scientists, econometrics & causal inference specialists, experimentation leads, analytics engineers crossing into DS, ML generalists with strong statistics, and data scientists collaborating with platform/MLOps teams in the UK.

Why Data Science Careers in the UK Are Becoming More Multidisciplinary

Data science once meant advanced statistics, machine learning models and coding in Python or R. In the UK today, it has become one of the most in-demand professions across sectors — from healthcare to finance, retail to government. But as the field matures, employers now expect more than technical modelling skills. Modern data science is multidisciplinary. It requires not just coding and algorithms, but also legal knowledge, ethical reasoning, psychological insight, linguistic clarity and human-centred design. Data scientists are expected to interpret, communicate and apply data responsibly, with awareness of law, human behaviour and accessibility. In this article, we’ll explore why data science careers in the UK are becoming more multidisciplinary, how these five disciplines intersect with data science, and what job-seekers & employers need to know to succeed in this transformed field.

Data Science Team Structures Explained: Who Does What in a Modern Data Science Department

Data science is one of the most in-demand, dynamic, and multidisciplinary areas in the UK tech and business landscape. Organisations from finance, retail, health, government, and beyond are using data to drive decisions, automate processes, personalise services, predict trends, detect fraud, and more. To do that well, companies don’t just need good data scientists; they need teams with clearly defined roles, responsibilities, workflows, collaboration, and governance. If you're aiming for a role in data science or recruiting for one, understanding the structure of a data science department—and who does what—can make all the difference. This article breaks down the key roles, how they interact across the lifecycle of a data science project, what skills and qualifications are typical in the UK, expected salary ranges, challenges, trends, and how to build or grow an effective team.