Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Geospatial Data Engineer

Omnis Partners
Birmingham
6 months ago
Applications closed

Related Jobs

View all jobs

Geospatial Data Engineer

Principal Geospatial Data Engineer

Senior Data Engineer (UK)

Data Engineer, Geospatial

GIS Data Engineer Security Cleared

UK Data Engineer - DV clearance required

Associate Director of Geospatial Data Engineering | £140k | Remote (UK) | Open Source + Geospatial + AI-adjacent


We’re working with a forward-thinking data consultancy that’s looking for ahands-on Associate Director of Geospatial Data Engineering— someone who blends deep technical ability with creativity, and loves solving unusual data challenges with open-source tools.

This is a unique opportunity to take ownership of strategic data engineering projects — helping clients build modern, scalable data platforms while leading from the front with your own engineering expertise.


What you'll be working with:

  • Python-first data engineering, building custom pipelines, automation tools and ingestion workflows.
  • PostgreSQL + PostGIS: serious spatial querying, indexing and geospatial wrangling.
  • Cloud-native infrastructure: AWS / GCP / Azure (your pick) — but with a proper understanding of how it all works under the hood.
  • Modern ETL/ELTusing Airflow, Spark, Dagster, Prefect — you choose the right tool for the job.
  • CI/CD for data: Git, Docker, automated testing, efficient and scalable workflows.


️ What sets this role apart:

  • Heavy emphasis ongeospatial data engineering— working with OSM, map tile rendering, Leaflet.js, Kepler.gl, and data visualisation.
  • Work on projects blendingprivate + public + non-traditional data sources— edge devices, IoT, NLP pipelines, and custom data processing challenges.
  • Preference for open-source tools (QGIS, SpaCy, MapTiler etc.) over proprietary systems.
  • A chance to shape the strategy, lead delivery, and stay close to the tech.


You might be a fit if you:

  • Have a deep understanding of systems, efficiency, and optimisation (e.g., edge computing, AI-on-device, or automation with Raspberry Pi).
  • Are a natural problem-solver who can connect data points others miss.
  • Enjoy tackling messy, unconventional datasets.
  • Have a track record ofpersonal projects, open-source contributions or building beyond the 9–5

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK data science hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise rigorous problem framing, high‑quality analytics & modelling, experiment/causality, production awareness (MLOps), governance/ethics, and measurable product or commercial impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for product/data scientists, applied ML scientists, decision scientists, econometricians, growth/marketing analysts, and ML‑adjacent data scientists supporting LLM/AI products. Who this is for: Product/decision/data scientists, applied ML scientists, econometrics & causal inference specialists, experimentation leads, analytics engineers crossing into DS, ML generalists with strong statistics, and data scientists collaborating with platform/MLOps teams in the UK.

Why Data Science Careers in the UK Are Becoming More Multidisciplinary

Data science once meant advanced statistics, machine learning models and coding in Python or R. In the UK today, it has become one of the most in-demand professions across sectors — from healthcare to finance, retail to government. But as the field matures, employers now expect more than technical modelling skills. Modern data science is multidisciplinary. It requires not just coding and algorithms, but also legal knowledge, ethical reasoning, psychological insight, linguistic clarity and human-centred design. Data scientists are expected to interpret, communicate and apply data responsibly, with awareness of law, human behaviour and accessibility. In this article, we’ll explore why data science careers in the UK are becoming more multidisciplinary, how these five disciplines intersect with data science, and what job-seekers & employers need to know to succeed in this transformed field.

Data Science Team Structures Explained: Who Does What in a Modern Data Science Department

Data science is one of the most in-demand, dynamic, and multidisciplinary areas in the UK tech and business landscape. Organisations from finance, retail, health, government, and beyond are using data to drive decisions, automate processes, personalise services, predict trends, detect fraud, and more. To do that well, companies don’t just need good data scientists; they need teams with clearly defined roles, responsibilities, workflows, collaboration, and governance. If you're aiming for a role in data science or recruiting for one, understanding the structure of a data science department—and who does what—can make all the difference. This article breaks down the key roles, how they interact across the lifecycle of a data science project, what skills and qualifications are typical in the UK, expected salary ranges, challenges, trends, and how to build or grow an effective team.