Gen AI Specialist

London
1 month ago
Create job alert

Gen AI Specialist
Location: Canary Wharf, London (3 days onsite)
Contract Length: 10 months
Daily Rate: £800 - £850 (inside IR35 via umbrella)

Are you a seasoned Data Scientist with a passion for Generative AI? Our client is seeking a Gen AI Specialist to join their dynamic Technology team in Canary Wharf. This role offers an exciting opportunity to work on innovative solutions that address complex financial data challenges, particularly in credit risk management.

Key Responsibilities:

Lead the development and coordination of analytical plans, ensuring alignment with various teams.
Manage deliverables in an agile environment while maintaining clear and effective communication with stakeholders.
Present analytical findings, updates, and challenges to diverse audiences including business units, technology management, and risk review teams.
Execute data modelling and cleaning processes utilising both internal and external data sources.
Build predictive and prescriptive models through data manipulation and cleaning.
Design, manage, and deploy analytical solutions leveraging Machine Learning (ML), Deep Learning (DL), and Large Language Models (LLMs) into production systems following the technology SDLC process.
Implement features throughout the ML lifecycle-Development, Testing, Training, Production, and Monitoring-to ensure the scalability and reliability of solutions.Qualifications:

PhD or master's degree in Computer Science, Data Science, Statistics, Mathematics, Engineering, or a related field.
Minimum of 5 years of industry experience as a data scientist, with a focus on ML modelling, Ranking, Recommendations, or Personalization systems.
Proven track record of designing and developing scalable and reliable machine learning systems.
Strong expertise in ML/DL/LLM algorithms, model architectures, and training techniques.
Proficiency in programming languages such as Python, SQL, Spark, PySpark, TensorFlow, or equivalent analytical/model-building tools.
Familiarity with tools and technologies related to LLMs.
Ability to work independently while also thriving in a collaborative team environment.
Experience with GenAI/LLMs projects.
Familiarity with distributed data/computing tools (e.g., Hadoop, Hive, Spark, MySQL).
Background in financial services, including banking or risk management.
Knowledge of capital markets and financial instruments, along with modelling expertise.

If you are a forward-thinking individual with an adaptive mindset ready to tackle complex business problems, we want to hear from you! Join our client's innovative team and contribute to the future of financial data analysis.

To Apply: Please submit your CV and a cover letter detailing your relevant experience and interest in the role.

Our client is an equal opportunity employer and welcomes applicants from diverse backgrounds.

Adecco is a disability-confident employer. It is important to us that we run an inclusive and accessible recruitment process to support candidates of all backgrounds and all abilities to apply. Adecco is committed to building a supportive environment for you to explore the next steps in your career. If you require reasonable adjustments at any stage, please let us know and we will be happy to support you

Related Jobs

View all jobs

Senior Data Analytics Sales Consultant

Program Manager

Lead Data Science Consultant

Data Science Manager – Gen/AI & ML Projects - Bristol

Data Science Manager - Gen/AI - Kent

Mid-Level/Principal Data Scientist

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Quantum-Enhanced AI in Data Science: Embracing the Next Frontier

Data science has undergone a staggering transformation in the past decade, evolving from a niche academic discipline into a linchpin of modern industry. Across every sector—finance, healthcare, retail, manufacturing—data scientists have become indispensable, leveraging statistical methods and machine learning to turn raw information into actionable insights. Yet as datasets grow ever larger and machine learning models become more computationally expensive, there are genuine questions about how far current methods can be pushed. Enter quantum computing, a nascent but promising technology grounded in the counterintuitive principles of quantum mechanics. Often dismissed just a few years ago as purely experimental, quantum computing is quickly gaining traction as prototypes evolve into cloud-accessible machines. When paired with artificial intelligence—particularly in the realm of data science—the results could be game-changing. From faster model training and complex optimisation to entirely new forms of data analysis, quantum-enhanced AI stands poised to disrupt established practices and create new opportunities. In this article, we will: Explore how data science has reached its current limits in certain areas, and why classical hardware might no longer suffice. Provide an accessible overview of quantum computing concepts and how they differ from classical systems. Examine the potential of quantum-enhanced AI to solve key data science challenges, from data wrangling to advanced machine learning. Highlight real-world applications, emerging job roles, and the skills you need to thrive in this new landscape. Offer actionable steps for data professionals eager to stay ahead of the curve in a rapidly evolving field. Whether you’re a practising data scientist, a student weighing up your future specialisations, or an executive curious about the next technological leap, read on. The quantum era may be closer than you think, and it promises to radically transform the very fabric of data science.

Data Science Jobs at Newly Funded UK Start-ups: Q3 2025 Investment Tracker

Data science has become an indispensable cornerstone of modern business, driving decisions across finance, healthcare, e-commerce, manufacturing, and beyond. As organisations scramble to capitalise on the insights their data can offer, data scientists and machine learning (ML) experts find themselves in ever-higher demand. In the UK, which has cultivated a robust ecosystem of tech innovation and academic excellence, data-driven start-ups continue to blossom—fuelled by venture capital, government grants, and a vibrant talent pool. In this Q3 2025 Investment Tracker, we delve into the newly funded UK start-ups making waves in data science. Beyond celebrating their funding milestones, we’ll explore the job opportunities these investments have created for aspiring and seasoned data scientists alike. Whether you’re interested in advanced analytics, NLP (Natural Language Processing), computer vision, or MLOps, these start-ups might just offer the career leap you’ve been waiting for.

Portfolio Projects That Get You Hired for Data Science Jobs (With Real GitHub Examples)

Data science is at the forefront of innovation, enabling organisations to turn vast amounts of data into actionable insights. Whether it’s building predictive models, performing exploratory analyses, or designing end-to-end machine learning solutions, data scientists are in high demand across every sector. But how can you stand out in a crowded job market? Alongside a solid CV, a well-curated data science portfolio often makes the difference between getting an interview and getting overlooked. In this comprehensive guide, we’ll explore: Why a data science portfolio is essential for job seekers. Selecting projects that align with your target data science roles. Real GitHub examples showcasing best practices. Actionable project ideas you can build right now. Best ways to present your projects and ensure recruiters can find them easily. By the end, you’ll be equipped to craft a compelling portfolio that proves your skills in a tangible way. And when you’re ready for your next career move, remember to upload your CV on DataScience-Jobs.co.uk so that your newly showcased work can be discovered by employers looking for exactly what you have to offer.