Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Gen AI Specialist

London
6 months ago
Applications closed

Related Jobs

View all jobs

Lead Research Data Scientist | Fraud Detection in Market Research

Senior Manager, Claims AI & Data Architect, Insurance, Technology & Transformation

Senior Manager, Claims AI & Data Architect, Insurance, Technology & Transformation

Legal Data Analytics Manager

Data Scientist Specialist

Lead Data Engineer

Gen AI Specialist
Location: Canary Wharf, London (3 days onsite)
Contract Length: 10 months
Daily Rate: £800 - £850 (inside IR35 via umbrella)

Are you a seasoned Data Scientist with a passion for Generative AI? Our client is seeking a Gen AI Specialist to join their dynamic Technology team in Canary Wharf. This role offers an exciting opportunity to work on innovative solutions that address complex financial data challenges, particularly in credit risk management.

Key Responsibilities:

Lead the development and coordination of analytical plans, ensuring alignment with various teams.
Manage deliverables in an agile environment while maintaining clear and effective communication with stakeholders.
Present analytical findings, updates, and challenges to diverse audiences including business units, technology management, and risk review teams.
Execute data modelling and cleaning processes utilising both internal and external data sources.
Build predictive and prescriptive models through data manipulation and cleaning.
Design, manage, and deploy analytical solutions leveraging Machine Learning (ML), Deep Learning (DL), and Large Language Models (LLMs) into production systems following the technology SDLC process.
Implement features throughout the ML lifecycle-Development, Testing, Training, Production, and Monitoring-to ensure the scalability and reliability of solutions.Qualifications:

PhD or master's degree in Computer Science, Data Science, Statistics, Mathematics, Engineering, or a related field.
Minimum of 5 years of industry experience as a data scientist, with a focus on ML modelling, Ranking, Recommendations, or Personalization systems.
Proven track record of designing and developing scalable and reliable machine learning systems.
Strong expertise in ML/DL/LLM algorithms, model architectures, and training techniques.
Proficiency in programming languages such as Python, SQL, Spark, PySpark, TensorFlow, or equivalent analytical/model-building tools.
Familiarity with tools and technologies related to LLMs.
Ability to work independently while also thriving in a collaborative team environment.
Experience with GenAI/LLMs projects.
Familiarity with distributed data/computing tools (e.g., Hadoop, Hive, Spark, MySQL).
Background in financial services, including banking or risk management.
Knowledge of capital markets and financial instruments, along with modelling expertise.

If you are a forward-thinking individual with an adaptive mindset ready to tackle complex business problems, we want to hear from you! Join our client's innovative team and contribute to the future of financial data analysis.

To Apply: Please submit your CV and a cover letter detailing your relevant experience and interest in the role.

Our client is an equal opportunity employer and welcomes applicants from diverse backgrounds.

Adecco is a disability-confident employer. It is important to us that we run an inclusive and accessible recruitment process to support candidates of all backgrounds and all abilities to apply. Adecco is committed to building a supportive environment for you to explore the next steps in your career. If you require reasonable adjustments at any stage, please let us know and we will be happy to support you

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK data science hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise rigorous problem framing, high‑quality analytics & modelling, experiment/causality, production awareness (MLOps), governance/ethics, and measurable product or commercial impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for product/data scientists, applied ML scientists, decision scientists, econometricians, growth/marketing analysts, and ML‑adjacent data scientists supporting LLM/AI products. Who this is for: Product/decision/data scientists, applied ML scientists, econometrics & causal inference specialists, experimentation leads, analytics engineers crossing into DS, ML generalists with strong statistics, and data scientists collaborating with platform/MLOps teams in the UK.

Why Data Science Careers in the UK Are Becoming More Multidisciplinary

Data science once meant advanced statistics, machine learning models and coding in Python or R. In the UK today, it has become one of the most in-demand professions across sectors — from healthcare to finance, retail to government. But as the field matures, employers now expect more than technical modelling skills. Modern data science is multidisciplinary. It requires not just coding and algorithms, but also legal knowledge, ethical reasoning, psychological insight, linguistic clarity and human-centred design. Data scientists are expected to interpret, communicate and apply data responsibly, with awareness of law, human behaviour and accessibility. In this article, we’ll explore why data science careers in the UK are becoming more multidisciplinary, how these five disciplines intersect with data science, and what job-seekers & employers need to know to succeed in this transformed field.

Data Science Team Structures Explained: Who Does What in a Modern Data Science Department

Data science is one of the most in-demand, dynamic, and multidisciplinary areas in the UK tech and business landscape. Organisations from finance, retail, health, government, and beyond are using data to drive decisions, automate processes, personalise services, predict trends, detect fraud, and more. To do that well, companies don’t just need good data scientists; they need teams with clearly defined roles, responsibilities, workflows, collaboration, and governance. If you're aiming for a role in data science or recruiting for one, understanding the structure of a data science department—and who does what—can make all the difference. This article breaks down the key roles, how they interact across the lifecycle of a data science project, what skills and qualifications are typical in the UK, expected salary ranges, challenges, trends, and how to build or grow an effective team.