Founding AI Engineer

Bishopsgate
3 weeks ago
Create job alert

Founding AI Engineer
Up to £130k + equity
London (5 days on-site)

Be part of the founding team at an early stage Fintech.
Best suited to someone who enjoys building and shipping.
Opportunity to build an AI native toolkit from scratch. 
I’m looking for a Founding AI Engineer to join a very early stage (Pre Seed) startup in London. This role is best suited to people who thrive working in highly ambiguous environments and are happy to pivot at the drop of a hat.
 
Startup life isn’t for everyone, so you do really need to be someone that gets excited by the idea of wearing many hats and getting stuck in.
 
The good news is that the business has two years of runway based on funding alone, the even better news is they’re already revenue generating!
 
Being part of the founding team means you’ll have the opportunity to build an AI native toolkit from the ground up. If having a tangible impact on the core product and overall success of the business is something excites you, then this role is for you.
 
The preferred option is to find people who have come through the software engineering route into AI, as opposed to the more traditional route of Data Scientist/ML Engineer. By this I mean you’ll need to be comfortable writing and shipping code and working on AI APIs, less so model building, fine tuning LLMs etc.
 
Essential requirements:

Founder type mindset with a strong product lens.
You value speed and scale over perfection.
Highly autonomous.
Experience building AI agents/agentic systems/architecture/RAG pipelines.
Software engineering background.
Experience developing and deploying production application layer products.
Enjoy the buzz of startup life and want to work with high energy people. 
Just to highlight, this role is 100% on-site. You will need to be happy being in the office more often than not.
 
Unfortunately, sponsorship is not available for this role.
 
Reach out to Jamie Forgan for more information

Related Jobs

View all jobs

AI Project Manager

Associate Director, Data Science and Innovation (Basé à London)

Senior Data Scientist

MIS Funding and Data Manager

Senior Data Analyst

Head of Data Science (Basé à London)

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for Data Science Jobs (With Real GitHub Examples)

Data science is at the forefront of innovation, enabling organisations to turn vast amounts of data into actionable insights. Whether it’s building predictive models, performing exploratory analyses, or designing end-to-end machine learning solutions, data scientists are in high demand across every sector. But how can you stand out in a crowded job market? Alongside a solid CV, a well-curated data science portfolio often makes the difference between getting an interview and getting overlooked. In this comprehensive guide, we’ll explore: Why a data science portfolio is essential for job seekers. Selecting projects that align with your target data science roles. Real GitHub examples showcasing best practices. Actionable project ideas you can build right now. Best ways to present your projects and ensure recruiters can find them easily. By the end, you’ll be equipped to craft a compelling portfolio that proves your skills in a tangible way. And when you’re ready for your next career move, remember to upload your CV on DataScience-Jobs.co.uk so that your newly showcased work can be discovered by employers looking for exactly what you have to offer.

Data Science Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Data science has become one of the most sought‑after fields in technology, leveraging mathematics, statistics, machine learning, and programming to derive valuable insights from data. Organisations across every sector—finance, healthcare, retail, government—rely on data scientists to build predictive models, understand patterns, and shape strategy with data‑driven decisions. If you’re gearing up for a data science interview, expect a well‑rounded evaluation. Beyond statistics and algorithms, many roles also require data wrangling, visualisation, software engineering, and communication skills. Interviewers want to see if you can slice and dice messy datasets, design experiments, and scale ML models to production. In this guide, we’ll explore 30 real coding & system‑design questions commonly posed in data science interviews. You’ll find challenges ranging from algorithmic coding and statistical puzzle‑solving to the architectural side of building data science platforms in real‑world settings. By practising with these questions, you’ll gain the confidence and clarity needed to stand out among competitive candidates. And if you’re actively seeking data science opportunities in the UK, be sure to visit www.datascience-jobs.co.uk. It’s a comprehensive hub featuring junior, mid‑level, and senior data science vacancies—spanning start‑ups to FTSE 100 companies. Let’s dive into what you need to know.

Negotiating Your Data Science Job Offer: Equity, Bonuses & Perks Explained

Data science has rapidly evolved from a niche specialty to a cornerstone of strategic decision-making in virtually every industry—from finance and healthcare to retail, entertainment, and AI research. As a mid‑senior data scientist, you’re not just running predictive models or generating dashboards; you’re shaping business strategy, product innovation, and customer experiences. This level of influence is why employers are increasingly offering compensation packages that go beyond a baseline salary. Yet, many professionals still tend to focus almost exclusively on base pay when negotiating a new role. This can be a costly oversight. Companies vying for data science talent—especially in the UK, where demand often outstrips supply—routinely offer equity, bonuses, flexible work options, and professional development funds in addition to salary. Recognising these opportunities and effectively negotiating them can have a substantial impact on your total earnings and long-term career satisfaction. This guide explores every facet of negotiating a data science job offer—from understanding equity structures and bonus schemes to weighing crucial perks like remote work and ongoing skill development. By the end, you’ll be well-equipped to secure a holistic package aligned with your market value, your life goals, and the tremendous impact you bring to any organisation.