Financial Data Analyst

Didsbury
3 days ago
Create job alert

An established and well-regarded financial services organisation is looking to appoint a Financial Data Analyst to join its Actuarial / Financial Reporting function.
This role would suit a numerate, detail-focused analyst who enjoys working with complex financial data, improving controls and processes, and supporting reporting within a regulated environment. The position offers broad exposure across valuations, management information, and project work, with regular interaction with senior stakeholders.
The Role
You will be responsible for supporting the financial and risk management activities of the business, with a particular focus on data quality, reconciliation, and reporting.
Key responsibilities will include:

  • Owning the data reconciliation process for monthly and year-end actuarial valuations
  • Identifying and implementing process improvements to enhance data accuracy and efficiency
  • Developing and maintaining a robust control framework around financial data used for actuarial purposes
  • Producing and updating financial and risk dashboards for senior management, Boards, and Committees
  • Supporting regular management information (MI) reporting
  • Leading demographic experience investigations and contributing to annual experience analysis
  • Supporting cross-functional projects, responding to data and analysis queries as required
  • Maintaining clear documentation of processes, controls, and procedures
    The Candidate
    The successful candidate is likely to have a strong analytical mindset and experience working with financial datasets in a structured, regulated environment.
    Essential requirements:
  • Degree-level qualification (or equivalent) in a numerate discipline
  • Experience analysing, summarising, and reconciling financial data
  • Strong Excel capability and high level of computer literacy (SQL desirable)
  • Excellent numeracy, attention to detail, and problem-solving skills
    In return you will be rewarded with a friendly, supportive working environment with a varied and interesting workload within a highly respected and established organisation

Related Jobs

View all jobs

Financial Data Analyst

Financial Data Analyst

Financial Data Analyst – Power BI & BI Insights

Financial Data Analyst – Across multiple locations

Financial Data Analyst – Across multiple locations

Financial Data Analyst – Across multiple locations

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many Data Science Tools Do You Need to Know to Get a Data Science Job?

If you’re trying to break into data science — or progress your career — it can feel like you are drowning in names: Python, R, TensorFlow, PyTorch, SQL, Spark, AWS, Scikit-learn, Jupyter, Tableau, Power BI…the list just keeps going. With every job advert listing a different combination of tools, many applicants fall into a trap: they try to learn everything. The result? Long tool lists that sound impressive — but little depth to back them up. Here’s the straight-talk version most hiring managers won’t explicitly tell you: 👉 You don’t need to know every data science tool to get hired. 👉 You need to know the right ones — deeply — and know how to use them to solve real problems. Tools matter, but only in service of outcomes. So how many data science tools do you actually need to know to get a job? For most job seekers, the answer is not “27” — it’s more like 8–12, thoughtfully chosen and well understood. This guide explains what employers really value, which tools are core, which are role-specific, and how to focus your toolbox so your CV and interviews shine.

What Hiring Managers Look for First in Data Science Job Applications (UK Guide)

If you’re applying for data science roles in the UK, it’s crucial to understand what hiring managers focus on before they dive into your full CV. In competitive markets, recruiters and hiring managers often make their first decisions in the first 10–20 seconds of scanning an application — and in data science, there are specific signals they look for first. Data science isn’t just about coding or statistics — it’s about producing insights, shipping models, collaborating with teams, and solving real business problems. This guide helps you understand exactly what hiring managers look for first in data science applications — and how to structure your CV, portfolio and cover letter so you leap to the top of the shortlist.

The Skills Gap in Data Science Jobs: What Universities Aren’t Teaching

Data science has become one of the most visible and sought-after careers in the UK technology market. From financial services and retail to healthcare, media, government and sport, organisations increasingly rely on data scientists to extract insight, guide decisions and build predictive models. Universities have responded quickly. Degrees in data science, analytics and artificial intelligence have expanded rapidly, and many computer science courses now include data-focused pathways. And yet, despite the volume of graduates entering the market, employers across the UK consistently report the same problem: Many data science candidates are not job-ready. Vacancies remain open. Hiring processes drag on. Candidates with impressive academic backgrounds fail interviews or struggle once hired. The issue is not intelligence or effort. It is a persistent skills gap between university education and real-world data science roles. This article explores that gap in depth: what universities teach well, what they often miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in data science.