Finance Data Analyst & Modeler (Graduate)

Intropic
City of London
1 month ago
Applications closed

Related Jobs

View all jobs

Financial Data Analyst

Financial Data Analyst

Finance Data Analyst

Finance Data Analyst

Finance / Data Analyst

Finance Data Analyst

About Intropic

We are a rapidly growing start-up, backed by leading venture capitalists. We love information because it helps people make better decisions and drives innovation. The information economy is just getting started and our suite of information and data processing software products are starting to help people unlock the true power of information. Our journey starts in finance and capital markets where information moves trillion dollar markets, but this is just the beginning.

Read a spotlight on Intropic here.

Join us to help the world unlock the true power of information.

Impact of role

Researchers at Intropic are responsible for driving the generation, and analysis of, high quality insights and information for our clients. To do this Researchers maintain and validate the output of our existing models, while seeking to improve them with new information sources and in depth analysis. Researchers also work directly with our clients: they build strong relationships and use knowledge of their area to ensure our clients are getting the most value from our data. As the domain experts at the company, research analysts should therefore expect to also work with cross functional teams, helping to roll out improvements and updates to our product, both internally and to our clients.

Responsibilities
  • Analysing large amounts of financial data & information
  • Validating the output of automated models to ensure they are accurate
  • Developing models & new modelling techniques
  • Modelling specific corporate actions as well as broader index changes
  • Writing research reports & content notes that help clients extract more value from our core forecasts
  • Communicating directly with our clients to help them better understand our research
  • Identifying & cataloguing new sources of publicly available information
Requirements
  • A data-driven and analytical mindset
  • Strong interest in finance & capital markets
  • Previous coding experience, preferably with Python, with a keen interest to learn more
  • Ability to communicate actionable insights derived from data analysis
  • Excellent academic results
  • Knowing Multiple languages will be a plus


#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

What Hiring Managers Look for First in Data Science Job Applications (UK Guide)

If you’re applying for data science roles in the UK, it’s crucial to understand what hiring managers focus on before they dive into your full CV. In competitive markets, recruiters and hiring managers often make their first decisions in the first 10–20 seconds of scanning an application — and in data science, there are specific signals they look for first. Data science isn’t just about coding or statistics — it’s about producing insights, shipping models, collaborating with teams, and solving real business problems. This guide helps you understand exactly what hiring managers look for first in data science applications — and how to structure your CV, portfolio and cover letter so you leap to the top of the shortlist.

The Skills Gap in Data Science Jobs: What Universities Aren’t Teaching

Data science has become one of the most visible and sought-after careers in the UK technology market. From financial services and retail to healthcare, media, government and sport, organisations increasingly rely on data scientists to extract insight, guide decisions and build predictive models. Universities have responded quickly. Degrees in data science, analytics and artificial intelligence have expanded rapidly, and many computer science courses now include data-focused pathways. And yet, despite the volume of graduates entering the market, employers across the UK consistently report the same problem: Many data science candidates are not job-ready. Vacancies remain open. Hiring processes drag on. Candidates with impressive academic backgrounds fail interviews or struggle once hired. The issue is not intelligence or effort. It is a persistent skills gap between university education and real-world data science roles. This article explores that gap in depth: what universities teach well, what they often miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in data science.

Data Science Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Thinking about switching into data science in your 30s, 40s or 50s? You’re far from alone. Across the UK, businesses are investing in data science talent to turn data into insight, support better decisions and unlock competitive advantage. But with all the hype about machine learning, Python, AI and data unicorns, it can be hard to separate real opportunities from noise. This article gives you a practical, UK-focused reality check on data science careers for mid-life career switchers — what roles really exist, what skills employers really hire for, how long retraining typically takes, what UK recruiters actually look for and how to craft a compelling career pivot story. Whether you come from finance, marketing, operations, research, project management or another field entirely, there are meaningful pathways into data science — and age itself is not the barrier many people fear.