Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Finance Data Analyst & Modeler (Graduate)

Intropic
City of London
4 days ago
Create job alert
About Intropic

We are a rapidly growing start-up, backed by leading venture capitalists. We love information because it helps people make better decisions and drives innovation. The information economy is just getting started and our suite of information and data processing software products are starting to help people unlock the true power of information. Our journey starts in finance and capital markets where information moves trillion dollar markets, but this is just the beginning.

Read a spotlight on Intropic here.

Join us to help the world unlock the true power of information.

Impact of role

Researchers at Intropic are responsible for driving the generation, and analysis of, high quality insights and information for our clients. To do this Researchers maintain and validate the output of our existing models, while seeking to improve them with new information sources and in depth analysis. Researchers also work directly with our clients: they build strong relationships and use knowledge of their area to ensure our clients are getting the most value from our data. As the domain experts at the company, research analysts should therefore expect to also work with cross functional teams, helping to roll out improvements and updates to our product, both internally and to our clients.

Responsibilities
  • Analysing large amounts of financial data & information
  • Validating the output of automated models to ensure they are accurate
  • Developing models & new modelling techniques
  • Modelling specific corporate actions as well as broader index changes
  • Writing research reports & content notes that help clients extract more value from our core forecasts
  • Communicating directly with our clients to help them better understand our research
  • Identifying & cataloguing new sources of publicly available information
Requirements
  • A data-driven and analytical mindset
  • Strong interest in finance & capital markets
  • Previous coding experience, preferably with Python, with a keen interest to learn more
  • Ability to communicate actionable insights derived from data analysis
  • Excellent academic results
  • Knowing Multiple languages will be a plus


#J-18808-Ljbffr

Related Jobs

View all jobs

Senior Data Analyst

Senior Quantitative Finance Analyst

Senior Data Scientist - Pricing

Senior Finance & Data Analyst (12-Month FTC)

Senior Finance & Data Analyst (12-Month FTC)

Lead Finance Data Analyst (12 month FTC)

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK data science hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise rigorous problem framing, high‑quality analytics & modelling, experiment/causality, production awareness (MLOps), governance/ethics, and measurable product or commercial impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for product/data scientists, applied ML scientists, decision scientists, econometricians, growth/marketing analysts, and ML‑adjacent data scientists supporting LLM/AI products. Who this is for: Product/decision/data scientists, applied ML scientists, econometrics & causal inference specialists, experimentation leads, analytics engineers crossing into DS, ML generalists with strong statistics, and data scientists collaborating with platform/MLOps teams in the UK.

Why Data Science Careers in the UK Are Becoming More Multidisciplinary

Data science once meant advanced statistics, machine learning models and coding in Python or R. In the UK today, it has become one of the most in-demand professions across sectors — from healthcare to finance, retail to government. But as the field matures, employers now expect more than technical modelling skills. Modern data science is multidisciplinary. It requires not just coding and algorithms, but also legal knowledge, ethical reasoning, psychological insight, linguistic clarity and human-centred design. Data scientists are expected to interpret, communicate and apply data responsibly, with awareness of law, human behaviour and accessibility. In this article, we’ll explore why data science careers in the UK are becoming more multidisciplinary, how these five disciplines intersect with data science, and what job-seekers & employers need to know to succeed in this transformed field.

Data Science Team Structures Explained: Who Does What in a Modern Data Science Department

Data science is one of the most in-demand, dynamic, and multidisciplinary areas in the UK tech and business landscape. Organisations from finance, retail, health, government, and beyond are using data to drive decisions, automate processes, personalise services, predict trends, detect fraud, and more. To do that well, companies don’t just need good data scientists; they need teams with clearly defined roles, responsibilities, workflows, collaboration, and governance. If you're aiming for a role in data science or recruiting for one, understanding the structure of a data science department—and who does what—can make all the difference. This article breaks down the key roles, how they interact across the lifecycle of a data science project, what skills and qualifications are typical in the UK, expected salary ranges, challenges, trends, and how to build or grow an effective team.