Engineering Manager - Data Science Team

Flo Health Inc.
London
1 week ago
Create job alert

400M+ downloads. 75M+ monthly users. A decade of building – and we’re still accelerating.


Flo is the world’s #1 health app on a mission to build a better future for female health. Backed by a $200M investment led by General Atlantic, we became the first product of our kind to reach a $1B valuation in 2024 – and we’re not slowing down.


With 6M paid subscribers and the highest-rated experience in the App Store’s health category, we’ve spent 10 years earning trust at scale. Now, we’re building the next generation of digital health – AI-powered, privacy-first, clinically backed – to help our users know their body better.


The job

We're not chasing a product – market fit. We've found it. Flo is used by 1 in 4 women aged 18–44 in the US. Last year, $200M raised. Earlier this year: 8.6M new installs, 2.8M user jump. That kind of scale doesn't just happen. It's engineered – and increasingly, it's predicted.


That's where you come in.

We're hiring a Data Science Lead in London to build and lead our Predictive Growth Optimization team – pioneering ML models that power our user acquisition strategy, predict lifetime value, and optimise our $25M+ annual marketing spend across channels.


This role owns the strategy, development, and continuous improvement of Flo's pLTV system - a mission-critical model reused across UA, AdTech, personalization, and financial forecasting. You'll balance hands-on technical leadership with people management, building production systems that directly impact our growth trajectory.


What you'll do

  • Lead & develop a team of 4+ ML and Backend engineers - hiring, mentoring, and setting technical direction
  • Own pLTV strategy - architect and evolve our core predictive lifetime value models that inform millions in UA decisions
  • Build production ML systems - from MMM algorithms to real-time forecasting models handling millions of daily predictions
  • Drive cross-functional impact - partner with Growth, Product, and Finance to translate business problems into ML solutions
  • Shape technical architecture - guide MLOps infrastructure, monitoring, and rapid iteration cycles
  • Stay hands‑on - contribute to modeling, architecture decisions, and technical problem‑solving as needed

What you bring
Technical Leadership

  • 7+ years applied ML experience building and deploying models in production
  • 4+ years managing technical teams (ML engineers, data scientists, or similar)
  • Expert knowledge of ML fundamentals: supervised/unsupervised learning, time series, causal inference
  • Experience with modern ML frameworks (PyTorch, TensorFlow, scikit‑learn, CatBoost)

Growth & Product Experience

  • Experience with growth analytics, attribution modeling, or marketing effectiveness
  • Understanding of user acquisition funnels and retention optimisation
  • Comfortable translating business requirements into technical roadmaps
  • Strong communication skills - can explain complex models to executive stakeholders

Production ML Systems

  • Experience deploying ML models at scale (millions+ predictions/day)
  • Knowledge of MLOps practices: model versioning, monitoring, automated retraining
  • Understanding of data engineering fundamentals and cloud platforms

Nice to have

  • Experience with Marketing Mix Modeling, attribution, or ad tech
  • Background in consumer tech, mobile apps, or health tech
  • Knowledge of privacy‑preserving ML techniques and A/B testing methodology

Annual Salary Range (ranges may vary based on skills and experience)


How we work

We’re a mission‑led, product‑driven team. We move fast, stay focused and take ownership – from brief to build to impact. Debate is encouraged. Decisions are shared. We care about craft, ship with purpose, and always raise the bar.


You’ll be working with people who take their work seriously, not themselves. It takes commitment, resilience, and the drive to keep going when things get tough. Because better health outcomes are worth it.


What you’ll get

  • Competitive salary and annual reviews
  • Opportunity to participate in Flo’s performance incentive scheme
  • Paid holiday, sick leave, and female health leave
  • Enhanced parental leave and pay for maternity, paternity, same‑sex and adoptive parents
  • Accelerated professional growth through world‑changing work and learning support
  • Flexible office + home working, up to 2 months a year working abroad
  • 5‑week fully paid sabbatical at 5‑year Floversary
  • Flo Premium for friends & family, plus more health, pension and wellbeing perks

Diversity, equity and inclusion

Our strength is in our differences. At Flo, hiring is based on merit, skill and what you bring to the role – nothing else. We’re proud to be an equal opportunity employer, and we welcome applicants from all backgrounds, communities and identities. Read our privacy notice for job applicants.


#J-18808-Ljbffr

Related Jobs

View all jobs

Engineering Manager, Data Science – Growth & pLTV Lead

Engineering Manager: Data Quality & Governance

Engineering Manager - Data Quality & Governance

Engineering Manager - Data Science Team

Data Engineering Manager

Data Engineering Manager

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Thinking about switching into data science in your 30s, 40s or 50s? You’re far from alone. Across the UK, businesses are investing in data science talent to turn data into insight, support better decisions and unlock competitive advantage. But with all the hype about machine learning, Python, AI and data unicorns, it can be hard to separate real opportunities from noise. This article gives you a practical, UK-focused reality check on data science careers for mid-life career switchers — what roles really exist, what skills employers really hire for, how long retraining typically takes, what UK recruiters actually look for and how to craft a compelling career pivot story. Whether you come from finance, marketing, operations, research, project management or another field entirely, there are meaningful pathways into data science — and age itself is not the barrier many people fear.

How to Write a Data Science Job Ad That Attracts the Right People

Data science plays a critical role in how organisations across the UK make decisions, build products and gain competitive advantage. From forecasting and personalisation to risk modelling and experimentation, data scientists help translate data into insight and action. Yet many employers struggle to attract the right data science candidates. Job adverts often generate high volumes of applications, but few applicants have the mix of analytical skill, business understanding and communication ability the role actually requires. At the same time, experienced data scientists skip over adverts that feel vague, inflated or misaligned with real data science work. In most cases, the issue is not a lack of talent — it is the quality and clarity of the job advert. Data scientists are analytical, sceptical of hype and highly selective. A poorly written job ad signals unclear expectations and immature data practices. A well-written one signals credibility, focus and serious intent. This guide explains how to write a data science job ad that attracts the right people, improves applicant quality and positions your organisation as a strong data employer.

Maths for Data Science Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are applying for data science jobs in the UK, the maths can feel like a moving target. Job descriptions say “strong statistical knowledge” or “solid ML fundamentals” but they rarely tell you which topics you will actually use day to day. Here’s the truth: most UK data science roles do not require advanced pure maths. What they do require is confidence with a tight set of practical topics that come up repeatedly in modelling, experimentation, forecasting, evaluation, stakeholder comms & decision-making. This guide focuses on the only maths most data scientists keep using: Statistics for decision making (confidence intervals, hypothesis tests, power, uncertainty) Probability for real-world data (base rates, noise, sampling, Bayesian intuition) Linear algebra essentials (vectors, matrices, projections, PCA intuition) Calculus & gradients (enough to understand optimisation & backprop) Optimisation & model evaluation (loss functions, cross-validation, metrics, thresholds) You’ll also get a 6-week plan, portfolio projects & a resources section you can follow without getting pulled into unnecessary theory.