Engineering Logistics Portal Engineer

Yafforth
1 month ago
Applications closed

Related Jobs

View all jobs

Group Finance Business Partner

Build Preparation Coordinator

AI Project Manager

Managing Consultant - Transport - Data Science (Basé à London)

Senior Data Scientist

Data Engineering Manager

Morson Talent are recruiting for a ELP Engineer to support operations at RAF Leeming.

Role Overview:

The ELP Engineer will be responsible for delivering Engineering Logistics Portal (ELP) capability and on/off-aircraft Task Definition Engineering within the Hawk Availability Service. The role will focus on managing aircraft equipment, ensuring accurate configuration management, and supporting maintenance tasking.

Key Responsibilities:

Oversee the on-base management of aircraft equipment, including determining repair locations and creating/managing work packages.

Conduct engineering data quality checks on inbound/outbound equipment and maintain accurate configuration records.

Analyse maintenance requirements and resolve issues to ensure timely creation of component work packages.

Collaborate with maintenance teams and supply chain operatives to ensure effective planning and scheduling of maintenance tasks.

Develop and maintain work packages, including technical instructions and resource requirements.

Author and approve off-aircraft task definitions while ensuring compliance with approved data and processes.

Ensure all maintenance tasking activities are documented and airworthiness records are maintained.

Apply Human Factors and Error Management philosophies to all activities and support risk mitigation efforts.

Requirements:

Essential:

Recent experience in a Maintenance & Continuing Airworthiness environment, including aircraft fleet support.

Knowledge of Hawk AJT aircraft or similar platforms.

Understanding of regulatory frameworks, safety, and quality management.

Strong analytical skills and attention to detail.

Proficiency in relevant IT systems used within Maintenance Tasking & Verification.

Desirable:

Knowledge of MAOS and DAOS organisations.

Experience in fleet planning, maintenance tasking, and demand management.

Qualifications:

Minimum NVQ Level 3/ONC in a relevant technical discipline, or Part 66 Category A qualification, or equivalent experience.

This is an exciting opportunity to play a key role in supporting the Hawk Mk167 Availability Service at RAF Leeming. If you are interested, apply today

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for Data Science Jobs (With Real GitHub Examples)

Data science is at the forefront of innovation, enabling organisations to turn vast amounts of data into actionable insights. Whether it’s building predictive models, performing exploratory analyses, or designing end-to-end machine learning solutions, data scientists are in high demand across every sector. But how can you stand out in a crowded job market? Alongside a solid CV, a well-curated data science portfolio often makes the difference between getting an interview and getting overlooked. In this comprehensive guide, we’ll explore: Why a data science portfolio is essential for job seekers. Selecting projects that align with your target data science roles. Real GitHub examples showcasing best practices. Actionable project ideas you can build right now. Best ways to present your projects and ensure recruiters can find them easily. By the end, you’ll be equipped to craft a compelling portfolio that proves your skills in a tangible way. And when you’re ready for your next career move, remember to upload your CV on DataScience-Jobs.co.uk so that your newly showcased work can be discovered by employers looking for exactly what you have to offer.

Data Science Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Data science has become one of the most sought‑after fields in technology, leveraging mathematics, statistics, machine learning, and programming to derive valuable insights from data. Organisations across every sector—finance, healthcare, retail, government—rely on data scientists to build predictive models, understand patterns, and shape strategy with data‑driven decisions. If you’re gearing up for a data science interview, expect a well‑rounded evaluation. Beyond statistics and algorithms, many roles also require data wrangling, visualisation, software engineering, and communication skills. Interviewers want to see if you can slice and dice messy datasets, design experiments, and scale ML models to production. In this guide, we’ll explore 30 real coding & system‑design questions commonly posed in data science interviews. You’ll find challenges ranging from algorithmic coding and statistical puzzle‑solving to the architectural side of building data science platforms in real‑world settings. By practising with these questions, you’ll gain the confidence and clarity needed to stand out among competitive candidates. And if you’re actively seeking data science opportunities in the UK, be sure to visit www.datascience-jobs.co.uk. It’s a comprehensive hub featuring junior, mid‑level, and senior data science vacancies—spanning start‑ups to FTSE 100 companies. Let’s dive into what you need to know.

Negotiating Your Data Science Job Offer: Equity, Bonuses & Perks Explained

Data science has rapidly evolved from a niche specialty to a cornerstone of strategic decision-making in virtually every industry—from finance and healthcare to retail, entertainment, and AI research. As a mid‑senior data scientist, you’re not just running predictive models or generating dashboards; you’re shaping business strategy, product innovation, and customer experiences. This level of influence is why employers are increasingly offering compensation packages that go beyond a baseline salary. Yet, many professionals still tend to focus almost exclusively on base pay when negotiating a new role. This can be a costly oversight. Companies vying for data science talent—especially in the UK, where demand often outstrips supply—routinely offer equity, bonuses, flexible work options, and professional development funds in addition to salary. Recognising these opportunities and effectively negotiating them can have a substantial impact on your total earnings and long-term career satisfaction. This guide explores every facet of negotiating a data science job offer—from understanding equity structures and bonus schemes to weighing crucial perks like remote work and ongoing skill development. By the end, you’ll be well-equipped to secure a holistic package aligned with your market value, your life goals, and the tremendous impact you bring to any organisation.