[EMEA] - Data Architect (Basé à London)

Jobleads
London
1 week ago
Create job alert

We aretech transformationspecialists, uniting human expertise with AI to create scalable tech solutions.

With over 6,500 CI&Ters around the world, we’ve built partnerships with more than 1,000 clients during our 30 years of history. Artificial Intelligence is our reality.

When applying for one of our positions, you’re agreeing to the use of AI in the early phases of the selection process, where your profile will be evaluated by our virtual assistant. For more information, access our opportunities’ page.

Key Responsibilities

  1. Design and implement robust data architectures using Data Bricks and cloud platforms (AWS, Azure).
  2. Collaborate with clients to understand their data needs and provide tailored solutions.
  3. Lead pitches and presentations to potential clients, clearly articulating our value proposition.
  4. Work hands-on with the team to create innovative solutions to complex data issues.
  5. Stay updated with the latest trends in data architecture and financial services to provide thought leadership.
  6. Mentor junior team members and foster a culture of continuous improvement.

Requirements

  1. Proven experience as a Data Architect with a strong background in data management and architecture.
  2. Demonstrated experience with Data Bricks and cloud technologies such as AWS or Azure.
  3. A solid career trajectory within data roles, showcasing growth and expertise.
  4. Strong client-facing skills with a track record of successful client engagement.
  5. Experience in leading pitches and engaging stakeholders effectively.
  6. Hands-on mentality with a passion for problem-solving and creating actionable solutions.
  7. Experience within the financial services industry is a distinct advantage.

What We Offer

  1. Competitive salary and benefits package.
  2. Opportunity to work with a talented team and industry leaders.
  3. A dynamic and supportive work environment that encourages innovation and growth.
  4. Professional development opportunities to further enhance your skills.

Collaboration is our superpower, diversity unites us, and excellence is our standard.

We value diverse identities and life experiences, fostering a diverse, inclusive, and safe work environment. We encourage applications from diverse and underrepresented groups to our job positions.

#J-18808-Ljbffr

Related Jobs

View all jobs

TikTok Shop - Data Science Lead, Governance & Experience, EMEA

Alpha Enviroment and Data Strategy Manager, Vice President

Data Architect

Senior Biostatistician

Senior Data Analyst

Data Analyst

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for Data Science Jobs (With Real GitHub Examples)

Data science is at the forefront of innovation, enabling organisations to turn vast amounts of data into actionable insights. Whether it’s building predictive models, performing exploratory analyses, or designing end-to-end machine learning solutions, data scientists are in high demand across every sector. But how can you stand out in a crowded job market? Alongside a solid CV, a well-curated data science portfolio often makes the difference between getting an interview and getting overlooked. In this comprehensive guide, we’ll explore: Why a data science portfolio is essential for job seekers. Selecting projects that align with your target data science roles. Real GitHub examples showcasing best practices. Actionable project ideas you can build right now. Best ways to present your projects and ensure recruiters can find them easily. By the end, you’ll be equipped to craft a compelling portfolio that proves your skills in a tangible way. And when you’re ready for your next career move, remember to upload your CV on DataScience-Jobs.co.uk so that your newly showcased work can be discovered by employers looking for exactly what you have to offer.

Data Science Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Data science has become one of the most sought‑after fields in technology, leveraging mathematics, statistics, machine learning, and programming to derive valuable insights from data. Organisations across every sector—finance, healthcare, retail, government—rely on data scientists to build predictive models, understand patterns, and shape strategy with data‑driven decisions. If you’re gearing up for a data science interview, expect a well‑rounded evaluation. Beyond statistics and algorithms, many roles also require data wrangling, visualisation, software engineering, and communication skills. Interviewers want to see if you can slice and dice messy datasets, design experiments, and scale ML models to production. In this guide, we’ll explore 30 real coding & system‑design questions commonly posed in data science interviews. You’ll find challenges ranging from algorithmic coding and statistical puzzle‑solving to the architectural side of building data science platforms in real‑world settings. By practising with these questions, you’ll gain the confidence and clarity needed to stand out among competitive candidates. And if you’re actively seeking data science opportunities in the UK, be sure to visit www.datascience-jobs.co.uk. It’s a comprehensive hub featuring junior, mid‑level, and senior data science vacancies—spanning start‑ups to FTSE 100 companies. Let’s dive into what you need to know.

Negotiating Your Data Science Job Offer: Equity, Bonuses & Perks Explained

Data science has rapidly evolved from a niche specialty to a cornerstone of strategic decision-making in virtually every industry—from finance and healthcare to retail, entertainment, and AI research. As a mid‑senior data scientist, you’re not just running predictive models or generating dashboards; you’re shaping business strategy, product innovation, and customer experiences. This level of influence is why employers are increasingly offering compensation packages that go beyond a baseline salary. Yet, many professionals still tend to focus almost exclusively on base pay when negotiating a new role. This can be a costly oversight. Companies vying for data science talent—especially in the UK, where demand often outstrips supply—routinely offer equity, bonuses, flexible work options, and professional development funds in addition to salary. Recognising these opportunities and effectively negotiating them can have a substantial impact on your total earnings and long-term career satisfaction. This guide explores every facet of negotiating a data science job offer—from understanding equity structures and bonus schemes to weighing crucial perks like remote work and ongoing skill development. By the end, you’ll be well-equipped to secure a holistic package aligned with your market value, your life goals, and the tremendous impact you bring to any organisation.