Econometrician / Data Scientist

London
9 months ago
Applications closed

Econometrician / Data Scientist

London (Hybrid working 3 office days per week)

Salary DOE £40,000-£45,000

Additional Benefits: Gym Membership, Pension and yearly bonus

Job Reference: J12950

We're excited to be hiring for a unique opportunity to join a fast-growing, independent marketing effectiveness agency that genuinely puts its people first.
This is a chance for someone who wants to be a bigger fish in a smaller sea to step into a role where you can truly make your mark, have real influence, and accelerate your career growth as we continue to scale. With a loyal and diverse client base, and a culture built on support and empowerment, you'll be part of a team where your ideas are heard and your impact is recognised.

We're looking for a motivated and capable Econometrician / Data Scientist with 2-3 years of hands-on experience in Marketing Mix Modelling (MMM). Experience within the FMCG sector would be a bonus, but it's not essential.

Roles and Responsibilities
• This role is well-suited for candidates who have a strong analytical mindset and prefer working behind the scenes with data
• Leading the modelling process from briefing, data exploration, and variable selection through to model building, interpretation, and being involved in the presentation of results (interim and final debriefs will be presented by the Account Director)
• Creating clear and insightful output decks for both internal stakeholders and client presentations

Experience & Skills Required
• Strong econometric modelling skills using tools such as R, Python, or other statistical software packages (e.g., EViews, SAS)
• Experience with model validation, diagnostics, and performance metrics
• Ability to handle large datasets, clean and transform raw data, and apply advanced statistical techniques such as regression, lag structures, adstock, saturation, and interaction effects
• The successful candidate will be expected to take full ownership of modelling projects, from raw data ingestion through to final model delivery and client-ready outputs, with minimal supervision.

If this sounds like you then please apply!
Alternatively, you can refer a friend or colleague by taking part in our fantastic referral schemes! If you have a friend or colleague who would be interested in this role, please refer them to us. For each relevant candidate that you introduce to us (there is no limit) and we place, you will be entitled to our general gift/voucher scheme

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many Data Science Tools Do You Need to Know to Get a Data Science Job?

If you’re trying to break into data science — or progress your career — it can feel like you are drowning in names: Python, R, TensorFlow, PyTorch, SQL, Spark, AWS, Scikit-learn, Jupyter, Tableau, Power BI…the list just keeps going. With every job advert listing a different combination of tools, many applicants fall into a trap: they try to learn everything. The result? Long tool lists that sound impressive — but little depth to back them up. Here’s the straight-talk version most hiring managers won’t explicitly tell you: 👉 You don’t need to know every data science tool to get hired. 👉 You need to know the right ones — deeply — and know how to use them to solve real problems. Tools matter, but only in service of outcomes. So how many data science tools do you actually need to know to get a job? For most job seekers, the answer is not “27” — it’s more like 8–12, thoughtfully chosen and well understood. This guide explains what employers really value, which tools are core, which are role-specific, and how to focus your toolbox so your CV and interviews shine.

What Hiring Managers Look for First in Data Science Job Applications (UK Guide)

If you’re applying for data science roles in the UK, it’s crucial to understand what hiring managers focus on before they dive into your full CV. In competitive markets, recruiters and hiring managers often make their first decisions in the first 10–20 seconds of scanning an application — and in data science, there are specific signals they look for first. Data science isn’t just about coding or statistics — it’s about producing insights, shipping models, collaborating with teams, and solving real business problems. This guide helps you understand exactly what hiring managers look for first in data science applications — and how to structure your CV, portfolio and cover letter so you leap to the top of the shortlist.

The Skills Gap in Data Science Jobs: What Universities Aren’t Teaching

Data science has become one of the most visible and sought-after careers in the UK technology market. From financial services and retail to healthcare, media, government and sport, organisations increasingly rely on data scientists to extract insight, guide decisions and build predictive models. Universities have responded quickly. Degrees in data science, analytics and artificial intelligence have expanded rapidly, and many computer science courses now include data-focused pathways. And yet, despite the volume of graduates entering the market, employers across the UK consistently report the same problem: Many data science candidates are not job-ready. Vacancies remain open. Hiring processes drag on. Candidates with impressive academic backgrounds fail interviews or struggle once hired. The issue is not intelligence or effort. It is a persistent skills gap between university education and real-world data science roles. This article explores that gap in depth: what universities teach well, what they often miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in data science.