Econometrician / Data Scientist

London
9 months ago
Applications closed

Econometrician / Data Scientist

London (Hybrid working 3 office days per week)

Salary DOE £40,000-£45,000

Additional Benefits: Gym Membership, Pension and yearly bonus

Job Reference: J12950

We're excited to be hiring for a unique opportunity to join a fast-growing, independent marketing effectiveness agency that genuinely puts its people first.
This is a chance for someone who wants to be a bigger fish in a smaller sea to step into a role where you can truly make your mark, have real influence, and accelerate your career growth as we continue to scale. With a loyal and diverse client base, and a culture built on support and empowerment, you'll be part of a team where your ideas are heard and your impact is recognised.

We're looking for a motivated and capable Econometrician / Data Scientist with 2-3 years of hands-on experience in Marketing Mix Modelling (MMM). Experience within the FMCG sector would be a bonus, but it's not essential.

Roles and Responsibilities
• This role is well-suited for candidates who have a strong analytical mindset and prefer working behind the scenes with data
• Leading the modelling process from briefing, data exploration, and variable selection through to model building, interpretation, and being involved in the presentation of results (interim and final debriefs will be presented by the Account Director)
• Creating clear and insightful output decks for both internal stakeholders and client presentations

Experience & Skills Required
• Strong econometric modelling skills using tools such as R, Python, or other statistical software packages (e.g., EViews, SAS)
• Experience with model validation, diagnostics, and performance metrics
• Ability to handle large datasets, clean and transform raw data, and apply advanced statistical techniques such as regression, lag structures, adstock, saturation, and interaction effects
• The successful candidate will be expected to take full ownership of modelling projects, from raw data ingestion through to final model delivery and client-ready outputs, with minimal supervision.

If this sounds like you then please apply!
Alternatively, you can refer a friend or colleague by taking part in our fantastic referral schemes! If you have a friend or colleague who would be interested in this role, please refer them to us. For each relevant candidate that you introduce to us (there is no limit) and we place, you will be entitled to our general gift/voucher scheme

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

What Hiring Managers Look for First in Data Science Job Applications (UK Guide)

If you’re applying for data science roles in the UK, it’s crucial to understand what hiring managers focus on before they dive into your full CV. In competitive markets, recruiters and hiring managers often make their first decisions in the first 10–20 seconds of scanning an application — and in data science, there are specific signals they look for first. Data science isn’t just about coding or statistics — it’s about producing insights, shipping models, collaborating with teams, and solving real business problems. This guide helps you understand exactly what hiring managers look for first in data science applications — and how to structure your CV, portfolio and cover letter so you leap to the top of the shortlist.

The Skills Gap in Data Science Jobs: What Universities Aren’t Teaching

Data science has become one of the most visible and sought-after careers in the UK technology market. From financial services and retail to healthcare, media, government and sport, organisations increasingly rely on data scientists to extract insight, guide decisions and build predictive models. Universities have responded quickly. Degrees in data science, analytics and artificial intelligence have expanded rapidly, and many computer science courses now include data-focused pathways. And yet, despite the volume of graduates entering the market, employers across the UK consistently report the same problem: Many data science candidates are not job-ready. Vacancies remain open. Hiring processes drag on. Candidates with impressive academic backgrounds fail interviews or struggle once hired. The issue is not intelligence or effort. It is a persistent skills gap between university education and real-world data science roles. This article explores that gap in depth: what universities teach well, what they often miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in data science.

Data Science Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Thinking about switching into data science in your 30s, 40s or 50s? You’re far from alone. Across the UK, businesses are investing in data science talent to turn data into insight, support better decisions and unlock competitive advantage. But with all the hype about machine learning, Python, AI and data unicorns, it can be hard to separate real opportunities from noise. This article gives you a practical, UK-focused reality check on data science careers for mid-life career switchers — what roles really exist, what skills employers really hire for, how long retraining typically takes, what UK recruiters actually look for and how to craft a compelling career pivot story. Whether you come from finance, marketing, operations, research, project management or another field entirely, there are meaningful pathways into data science — and age itself is not the barrier many people fear.