Econometrician / Data Scientist

London
3 weeks ago
Create job alert

Econometrician / Data Scientist

London (Hybrid working 3 office days per week)

Salary DOE £40,000-£45,000

Additional Benefits: Gym Membership, Pension and yearly bonus

Job Reference: J12950

We're excited to be hiring for a unique opportunity to join a fast-growing, independent marketing effectiveness agency that genuinely puts its people first.
This is a chance for someone who wants to be a bigger fish in a smaller sea to step into a role where you can truly make your mark, have real influence, and accelerate your career growth as we continue to scale. With a loyal and diverse client base, and a culture built on support and empowerment, you'll be part of a team where your ideas are heard and your impact is recognised.

We're looking for a motivated and capable Econometrician / Data Scientist with 2-3 years of hands-on experience in Marketing Mix Modelling (MMM). Experience within the FMCG sector would be a bonus, but it's not essential.

Roles and Responsibilities
• This role is well-suited for candidates who have a strong analytical mindset and prefer working behind the scenes with data
• Leading the modelling process from briefing, data exploration, and variable selection through to model building, interpretation, and being involved in the presentation of results (interim and final debriefs will be presented by the Account Director)
• Creating clear and insightful output decks for both internal stakeholders and client presentations

Experience & Skills Required
• Strong econometric modelling skills using tools such as R, Python, or other statistical software packages (e.g., EViews, SAS)
• Experience with model validation, diagnostics, and performance metrics
• Ability to handle large datasets, clean and transform raw data, and apply advanced statistical techniques such as regression, lag structures, adstock, saturation, and interaction effects
• The successful candidate will be expected to take full ownership of modelling projects, from raw data ingestion through to final model delivery and client-ready outputs, with minimal supervision.

If this sounds like you then please apply!
Alternatively, you can refer a friend or colleague by taking part in our fantastic referral schemes! If you have a friend or colleague who would be interested in this role, please refer them to us. For each relevant candidate that you introduce to us (there is no limit) and we place, you will be entitled to our general gift/voucher scheme

Related Jobs

View all jobs

Econometrician / Data Scientist

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for Data Science Jobs (With Real GitHub Examples)

Data science is at the forefront of innovation, enabling organisations to turn vast amounts of data into actionable insights. Whether it’s building predictive models, performing exploratory analyses, or designing end-to-end machine learning solutions, data scientists are in high demand across every sector. But how can you stand out in a crowded job market? Alongside a solid CV, a well-curated data science portfolio often makes the difference between getting an interview and getting overlooked. In this comprehensive guide, we’ll explore: Why a data science portfolio is essential for job seekers. Selecting projects that align with your target data science roles. Real GitHub examples showcasing best practices. Actionable project ideas you can build right now. Best ways to present your projects and ensure recruiters can find them easily. By the end, you’ll be equipped to craft a compelling portfolio that proves your skills in a tangible way. And when you’re ready for your next career move, remember to upload your CV on DataScience-Jobs.co.uk so that your newly showcased work can be discovered by employers looking for exactly what you have to offer.

Data Science Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Data science has become one of the most sought‑after fields in technology, leveraging mathematics, statistics, machine learning, and programming to derive valuable insights from data. Organisations across every sector—finance, healthcare, retail, government—rely on data scientists to build predictive models, understand patterns, and shape strategy with data‑driven decisions. If you’re gearing up for a data science interview, expect a well‑rounded evaluation. Beyond statistics and algorithms, many roles also require data wrangling, visualisation, software engineering, and communication skills. Interviewers want to see if you can slice and dice messy datasets, design experiments, and scale ML models to production. In this guide, we’ll explore 30 real coding & system‑design questions commonly posed in data science interviews. You’ll find challenges ranging from algorithmic coding and statistical puzzle‑solving to the architectural side of building data science platforms in real‑world settings. By practising with these questions, you’ll gain the confidence and clarity needed to stand out among competitive candidates. And if you’re actively seeking data science opportunities in the UK, be sure to visit www.datascience-jobs.co.uk. It’s a comprehensive hub featuring junior, mid‑level, and senior data science vacancies—spanning start‑ups to FTSE 100 companies. Let’s dive into what you need to know.

Negotiating Your Data Science Job Offer: Equity, Bonuses & Perks Explained

Data science has rapidly evolved from a niche specialty to a cornerstone of strategic decision-making in virtually every industry—from finance and healthcare to retail, entertainment, and AI research. As a mid‑senior data scientist, you’re not just running predictive models or generating dashboards; you’re shaping business strategy, product innovation, and customer experiences. This level of influence is why employers are increasingly offering compensation packages that go beyond a baseline salary. Yet, many professionals still tend to focus almost exclusively on base pay when negotiating a new role. This can be a costly oversight. Companies vying for data science talent—especially in the UK, where demand often outstrips supply—routinely offer equity, bonuses, flexible work options, and professional development funds in addition to salary. Recognising these opportunities and effectively negotiating them can have a substantial impact on your total earnings and long-term career satisfaction. This guide explores every facet of negotiating a data science job offer—from understanding equity structures and bonus schemes to weighing crucial perks like remote work and ongoing skill development. By the end, you’ll be well-equipped to secure a holistic package aligned with your market value, your life goals, and the tremendous impact you bring to any organisation.