Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Econometrician / Data Scientist

London
7 months ago
Applications closed

Econometrician / Data Scientist

London (Hybrid working 3 office days per week)

Salary DOE £40,000-£45,000

Additional Benefits: Gym Membership, Pension and yearly bonus

Job Reference: J12950

We're excited to be hiring for a unique opportunity to join a fast-growing, independent marketing effectiveness agency that genuinely puts its people first.
This is a chance for someone who wants to be a bigger fish in a smaller sea to step into a role where you can truly make your mark, have real influence, and accelerate your career growth as we continue to scale. With a loyal and diverse client base, and a culture built on support and empowerment, you'll be part of a team where your ideas are heard and your impact is recognised.

We're looking for a motivated and capable Econometrician / Data Scientist with 2-3 years of hands-on experience in Marketing Mix Modelling (MMM). Experience within the FMCG sector would be a bonus, but it's not essential.

Roles and Responsibilities
• This role is well-suited for candidates who have a strong analytical mindset and prefer working behind the scenes with data
• Leading the modelling process from briefing, data exploration, and variable selection through to model building, interpretation, and being involved in the presentation of results (interim and final debriefs will be presented by the Account Director)
• Creating clear and insightful output decks for both internal stakeholders and client presentations

Experience & Skills Required
• Strong econometric modelling skills using tools such as R, Python, or other statistical software packages (e.g., EViews, SAS)
• Experience with model validation, diagnostics, and performance metrics
• Ability to handle large datasets, clean and transform raw data, and apply advanced statistical techniques such as regression, lag structures, adstock, saturation, and interaction effects
• The successful candidate will be expected to take full ownership of modelling projects, from raw data ingestion through to final model delivery and client-ready outputs, with minimal supervision.

If this sounds like you then please apply!
Alternatively, you can refer a friend or colleague by taking part in our fantastic referral schemes! If you have a friend or colleague who would be interested in this role, please refer them to us. For each relevant candidate that you introduce to us (there is no limit) and we place, you will be entitled to our general gift/voucher scheme

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK data science hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise rigorous problem framing, high‑quality analytics & modelling, experiment/causality, production awareness (MLOps), governance/ethics, and measurable product or commercial impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for product/data scientists, applied ML scientists, decision scientists, econometricians, growth/marketing analysts, and ML‑adjacent data scientists supporting LLM/AI products. Who this is for: Product/decision/data scientists, applied ML scientists, econometrics & causal inference specialists, experimentation leads, analytics engineers crossing into DS, ML generalists with strong statistics, and data scientists collaborating with platform/MLOps teams in the UK.

Why Data Science Careers in the UK Are Becoming More Multidisciplinary

Data science once meant advanced statistics, machine learning models and coding in Python or R. In the UK today, it has become one of the most in-demand professions across sectors — from healthcare to finance, retail to government. But as the field matures, employers now expect more than technical modelling skills. Modern data science is multidisciplinary. It requires not just coding and algorithms, but also legal knowledge, ethical reasoning, psychological insight, linguistic clarity and human-centred design. Data scientists are expected to interpret, communicate and apply data responsibly, with awareness of law, human behaviour and accessibility. In this article, we’ll explore why data science careers in the UK are becoming more multidisciplinary, how these five disciplines intersect with data science, and what job-seekers & employers need to know to succeed in this transformed field.

Data Science Team Structures Explained: Who Does What in a Modern Data Science Department

Data science is one of the most in-demand, dynamic, and multidisciplinary areas in the UK tech and business landscape. Organisations from finance, retail, health, government, and beyond are using data to drive decisions, automate processes, personalise services, predict trends, detect fraud, and more. To do that well, companies don’t just need good data scientists; they need teams with clearly defined roles, responsibilities, workflows, collaboration, and governance. If you're aiming for a role in data science or recruiting for one, understanding the structure of a data science department—and who does what—can make all the difference. This article breaks down the key roles, how they interact across the lifecycle of a data science project, what skills and qualifications are typical in the UK, expected salary ranges, challenges, trends, and how to build or grow an effective team.