Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Director of Artificial Intelligence - Manufacturing & Industrial

Birmingham
5 months ago
Applications closed

Related Jobs

View all jobs

Director, Data Architecture & Platforms

Director, Data Architecture & Platforms

Risk Management & Compliance - Data Scientist Director

Risk Management & Compliance - Data Scientist Director

Lead Behavioural Modeling Quantitative Strategist - Deutsche Bank

Clinical Data Engineering Lead

Director of Artificial Intelligence – Manufacturing & Industrial Systems

We’re representing a global manufacturing group investing heavily in AI and data-driven transformation. With a footprint across automotive, aerospace, and precision engineering, the business is embedding AI across predictive maintenance, process automation, and real-time analytics.

As they scale, they’re seeking a Director of Artificial Intelligence to drive enterprise-wide AI integration – from proof-of-concept to full deployment – working cross-functionally across operations, supply chain, and executive leadership.

Key Responsibilities:



Own and lead the AI strategy across industrial applications, driving long-term innovation and commercial impact.

*

Build and manage a high-performing AI team including Data Scientists, ML Engineers, and external partners.

*

Collaborate with manufacturing, engineering, and C-suite leaders to identify business-critical AI use cases.

*

Oversee AI/ML model development, deployment, and lifecycle management across complex manufacturing systems.

*

Lead vendor selection, tech stack decisions, and budget for AI transformation.

Experience Required:

*

Proven leadership in AI within manufacturing, industrial automation, or automotive environments.

*

Hands-on understanding of ML, deep learning, computer vision, or time-series data analytics.

*

Strong background with tools like Python, TensorFlow, PyTorch, and data pipeline architecture.

*

Experience delivering AI at scale — from concept through implementation and post-deployment optimization.

*

Excellent stakeholder management across technical and non-technical teams.

What’s on Offer:

*

Strategic global leadership role within a business committed to AI-led transformation.

*

Opportunities for board-level interaction and influence.

*

Competitive salary + long-term incentives + autonomy to drive innovation.

*

Career-defining projects that push the boundaries of smart manufacturing.

Apply Today
Ready to transform industrial performance through AI? Submit your CV and we’ll be in touch for a confidential discussion. Only applicants with demonstrable AI project experience in a commercial environment will be considered

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK data science hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise rigorous problem framing, high‑quality analytics & modelling, experiment/causality, production awareness (MLOps), governance/ethics, and measurable product or commercial impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for product/data scientists, applied ML scientists, decision scientists, econometricians, growth/marketing analysts, and ML‑adjacent data scientists supporting LLM/AI products. Who this is for: Product/decision/data scientists, applied ML scientists, econometrics & causal inference specialists, experimentation leads, analytics engineers crossing into DS, ML generalists with strong statistics, and data scientists collaborating with platform/MLOps teams in the UK.

Why Data Science Careers in the UK Are Becoming More Multidisciplinary

Data science once meant advanced statistics, machine learning models and coding in Python or R. In the UK today, it has become one of the most in-demand professions across sectors — from healthcare to finance, retail to government. But as the field matures, employers now expect more than technical modelling skills. Modern data science is multidisciplinary. It requires not just coding and algorithms, but also legal knowledge, ethical reasoning, psychological insight, linguistic clarity and human-centred design. Data scientists are expected to interpret, communicate and apply data responsibly, with awareness of law, human behaviour and accessibility. In this article, we’ll explore why data science careers in the UK are becoming more multidisciplinary, how these five disciplines intersect with data science, and what job-seekers & employers need to know to succeed in this transformed field.

Data Science Team Structures Explained: Who Does What in a Modern Data Science Department

Data science is one of the most in-demand, dynamic, and multidisciplinary areas in the UK tech and business landscape. Organisations from finance, retail, health, government, and beyond are using data to drive decisions, automate processes, personalise services, predict trends, detect fraud, and more. To do that well, companies don’t just need good data scientists; they need teams with clearly defined roles, responsibilities, workflows, collaboration, and governance. If you're aiming for a role in data science or recruiting for one, understanding the structure of a data science department—and who does what—can make all the difference. This article breaks down the key roles, how they interact across the lifecycle of a data science project, what skills and qualifications are typical in the UK, expected salary ranges, challenges, trends, and how to build or grow an effective team.