DevSecOps Engineer

Farringdon Without
1 year ago
Applications closed

Related Jobs

View all jobs

Data Engineer

Senior Quantitative Risk Analyst

BI & Data Warehouse Developer

Manufacturing Data Scientist

Enterprise Market Risk Quantitative Analyst (IRRBB & CSRBB), AVP

DevSecOps Engineer - London (Hybrid) - £58-£68,000 + 15% cash flex bonus + 15% bonus

All applicants must hold an active Security clearance (SC).

My client is a global IT consultancy. They are on the hunt for a DevSecOps Engineer with strong knowledge in operational procedures, data transformation using Apache Spark, AWS RDS (MySQL), and working with Hadoop. Familiarity with Tableau and Red Hat Decision Centre is also required.

Requirements:

Experience in a DevSecOps role.
Strong operational procedures knowledge.
Proficient in Apache Spark, AWS RDS (MySQL), and Hadoop.
Knowledge of Tableau and Red Hat Decision CentralKey Responsibilities:

Manage operational procedures.
Transform and process data using Apache Spark.
Administer AWS RDS with MySQL.
Work with the Hadoop platform.
Create reports using Tableau.
Utilize Red Hat Decision CentralDevSecOps Engineer - London (Hybrid) - £58-£68,000 + 15% cash flex bonus + 15% bonus

Damia Group Limited acts as an employment agency for permanent recruitment and employment business for the supply of temporary workers. By applying for this job you accept our Data Protection Policy which can be found on our website.

Please note that no terminology in this advert is intended to discriminate on the grounds of a person's gender, marital status, race, religion, colour, age, disability or sexual orientation. Every candidate will be assessed only in accordance with their merits, qualifications and ability to perform the duties of the job.

Damia Group is acting as an Employment Business in relation to this vacancy and in accordance to Conduct Regulations 2003

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many Data Science Tools Do You Need to Know to Get a Data Science Job?

If you’re trying to break into data science — or progress your career — it can feel like you are drowning in names: Python, R, TensorFlow, PyTorch, SQL, Spark, AWS, Scikit-learn, Jupyter, Tableau, Power BI…the list just keeps going. With every job advert listing a different combination of tools, many applicants fall into a trap: they try to learn everything. The result? Long tool lists that sound impressive — but little depth to back them up. Here’s the straight-talk version most hiring managers won’t explicitly tell you: 👉 You don’t need to know every data science tool to get hired. 👉 You need to know the right ones — deeply — and know how to use them to solve real problems. Tools matter, but only in service of outcomes. So how many data science tools do you actually need to know to get a job? For most job seekers, the answer is not “27” — it’s more like 8–12, thoughtfully chosen and well understood. This guide explains what employers really value, which tools are core, which are role-specific, and how to focus your toolbox so your CV and interviews shine.

What Hiring Managers Look for First in Data Science Job Applications (UK Guide)

If you’re applying for data science roles in the UK, it’s crucial to understand what hiring managers focus on before they dive into your full CV. In competitive markets, recruiters and hiring managers often make their first decisions in the first 10–20 seconds of scanning an application — and in data science, there are specific signals they look for first. Data science isn’t just about coding or statistics — it’s about producing insights, shipping models, collaborating with teams, and solving real business problems. This guide helps you understand exactly what hiring managers look for first in data science applications — and how to structure your CV, portfolio and cover letter so you leap to the top of the shortlist.

The Skills Gap in Data Science Jobs: What Universities Aren’t Teaching

Data science has become one of the most visible and sought-after careers in the UK technology market. From financial services and retail to healthcare, media, government and sport, organisations increasingly rely on data scientists to extract insight, guide decisions and build predictive models. Universities have responded quickly. Degrees in data science, analytics and artificial intelligence have expanded rapidly, and many computer science courses now include data-focused pathways. And yet, despite the volume of graduates entering the market, employers across the UK consistently report the same problem: Many data science candidates are not job-ready. Vacancies remain open. Hiring processes drag on. Candidates with impressive academic backgrounds fail interviews or struggle once hired. The issue is not intelligence or effort. It is a persistent skills gap between university education and real-world data science roles. This article explores that gap in depth: what universities teach well, what they often miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in data science.