Datawarehouse Lead (ERP, Informatica, Azure, ETL, SQL, BI)

Dudley
3 weeks ago
Create job alert

Job Title: Data Warehouse Manager
Location: Dudley, West Midlands - Hybrid Working (ideally 2 days a week onsite, rest remote)
Job Type: Full time, Permanent
Salary: £70k - £90K Base Per Annum DOE, Plus Standard Company Benefits (Pension etc)

Our leading, Midlands based manufacturing client is seeking a hands on, technical Data Warehouse Lead/Manager with ERP and Azure Cloud experience, to oversee the design, development and maintenance of their data hub, as part of their corporate data warehouse solutions.

As well as being responsible for the design and development of the data platform, this is also a hands on role - 60% hands on development with 40% Team Leading including work allocation, pastoral care. The Datawarehouse Manager will have 2 people in the US to lead, along with a BI Analyst.

Responsibilities:

Designing, building, testing, and documenting ETL/ELT solutions.
Ensuring up-to-date and accurate documentation, including lineage, for all production solutions.
Monitoring and optimising the performance of data warehouse systems.
Managing data models, schemas, and metadata repositories.
Maintaining operational data warehouse builds and resolving issues promptly.
Ensuring adherence to agreed standards and controls for data marts and operational data stores.
Leading the release and promotion of new solutions to enhance functionality and productivity.Requirements:

Experience designing, writing, editing, debugging and testing advanced SQL code, stored procedures and database schemas for Microsoft SQL Server and ideally Oracle as well.
Data warehousing, data modelling, insights creation, data science, cloud solutions and data management.
ETL development and orchestration experience using Azure Data Factory and Informatica.
Experience using both Cloud (Azure) and On-prem data platform configurations.
Working within an end-to-end BI lifecycle.
Experience with development using the Microsoft Fabric suite of tools is preferred.
Knowledge and experience of working with ERP systems - essential.
Experience of working with ERP systems within the manufacturing industry a big plus.
Team Leading/Management experience.If this opportunity appeals to you and aligns closely to your background - please submit your application to Jackie Dean at Jumar for consideration.

Jumar takes great pride in representing socially responsible clients who not only prioritise diversity and inclusion but also actively combat social inequality. Together, we have the power to make a profound impact on fostering a more equitable and inclusive society. By working with us, you become part of a movement dedicated to promoting a diverse and inclusive workforce

Related Jobs

View all jobs

Datawarehouse ERP Lead (Informatica, Azure Cloud, ETL, SQL, BI)

Datawarehouse Manager (ERP, Manufacturing, Azure, Cloud)

Data Warehouse Lead (ERP, SQL, BI, ETL)

Data Warehouse Lead

Data Strategy Lead

Data Engineer - Leading Energy Company - London

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for Data Science Jobs (With Real GitHub Examples)

Data science is at the forefront of innovation, enabling organisations to turn vast amounts of data into actionable insights. Whether it’s building predictive models, performing exploratory analyses, or designing end-to-end machine learning solutions, data scientists are in high demand across every sector. But how can you stand out in a crowded job market? Alongside a solid CV, a well-curated data science portfolio often makes the difference between getting an interview and getting overlooked. In this comprehensive guide, we’ll explore: Why a data science portfolio is essential for job seekers. Selecting projects that align with your target data science roles. Real GitHub examples showcasing best practices. Actionable project ideas you can build right now. Best ways to present your projects and ensure recruiters can find them easily. By the end, you’ll be equipped to craft a compelling portfolio that proves your skills in a tangible way. And when you’re ready for your next career move, remember to upload your CV on DataScience-Jobs.co.uk so that your newly showcased work can be discovered by employers looking for exactly what you have to offer.

Data Science Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Data science has become one of the most sought‑after fields in technology, leveraging mathematics, statistics, machine learning, and programming to derive valuable insights from data. Organisations across every sector—finance, healthcare, retail, government—rely on data scientists to build predictive models, understand patterns, and shape strategy with data‑driven decisions. If you’re gearing up for a data science interview, expect a well‑rounded evaluation. Beyond statistics and algorithms, many roles also require data wrangling, visualisation, software engineering, and communication skills. Interviewers want to see if you can slice and dice messy datasets, design experiments, and scale ML models to production. In this guide, we’ll explore 30 real coding & system‑design questions commonly posed in data science interviews. You’ll find challenges ranging from algorithmic coding and statistical puzzle‑solving to the architectural side of building data science platforms in real‑world settings. By practising with these questions, you’ll gain the confidence and clarity needed to stand out among competitive candidates. And if you’re actively seeking data science opportunities in the UK, be sure to visit www.datascience-jobs.co.uk. It’s a comprehensive hub featuring junior, mid‑level, and senior data science vacancies—spanning start‑ups to FTSE 100 companies. Let’s dive into what you need to know.

Negotiating Your Data Science Job Offer: Equity, Bonuses & Perks Explained

Data science has rapidly evolved from a niche specialty to a cornerstone of strategic decision-making in virtually every industry—from finance and healthcare to retail, entertainment, and AI research. As a mid‑senior data scientist, you’re not just running predictive models or generating dashboards; you’re shaping business strategy, product innovation, and customer experiences. This level of influence is why employers are increasingly offering compensation packages that go beyond a baseline salary. Yet, many professionals still tend to focus almost exclusively on base pay when negotiating a new role. This can be a costly oversight. Companies vying for data science talent—especially in the UK, where demand often outstrips supply—routinely offer equity, bonuses, flexible work options, and professional development funds in addition to salary. Recognising these opportunities and effectively negotiating them can have a substantial impact on your total earnings and long-term career satisfaction. This guide explores every facet of negotiating a data science job offer—from understanding equity structures and bonus schemes to weighing crucial perks like remote work and ongoing skill development. By the end, you’ll be well-equipped to secure a holistic package aligned with your market value, your life goals, and the tremendous impact you bring to any organisation.