Datawarehouse Lead (ERP, Informatica, Azure, ETL, SQL, BI)

Dudley
1 month ago
Applications closed

Related Jobs

View all jobs

Data Warehouse Lead - Team Management

Data Engineer

AWS Data Engineer

Lead Data Engineer - Snowflake, DBT, Airflow - London - £100k

Lead Reporting and Data Analyst

Lead Data Engineer

Job Title: Data Warehouse Manager
Location: Dudley, West Midlands - Hybrid Working (ideally 2 days a week onsite, rest remote)
Job Type: Full time, Permanent
Salary: £70k - £90K Base Per Annum DOE, Plus Standard Company Benefits (Pension etc)

Our leading, Midlands based manufacturing client is seeking a hands on, technical Data Warehouse Lead/Manager with ERP and Azure Cloud experience, to oversee the design, development and maintenance of their data hub, as part of their corporate data warehouse solutions.

As well as being responsible for the design and development of the data platform, this is also a hands on role - 60% hands on development with 40% Team Leading including work allocation, pastoral care. The Datawarehouse Manager will have 2 people in the US to lead, along with a BI Analyst.

Responsibilities:

Designing, building, testing, and documenting ETL/ELT solutions.
Ensuring up-to-date and accurate documentation, including lineage, for all production solutions.
Monitoring and optimising the performance of data warehouse systems.
Managing data models, schemas, and metadata repositories.
Maintaining operational data warehouse builds and resolving issues promptly.
Ensuring adherence to agreed standards and controls for data marts and operational data stores.
Leading the release and promotion of new solutions to enhance functionality and productivity.Requirements:

Experience designing, writing, editing, debugging and testing advanced SQL code, stored procedures and database schemas for Microsoft SQL Server and ideally Oracle as well.
Data warehousing, data modelling, insights creation, data science, cloud solutions and data management.
ETL development and orchestration experience using Azure Data Factory and Informatica.
Experience using both Cloud (Azure) and On-prem data platform configurations.
Working within an end-to-end BI lifecycle.
Experience with development using the Microsoft Fabric suite of tools is preferred.
Knowledge and experience of working with ERP systems - essential.
Experience of working with ERP systems within the manufacturing industry a big plus.
Team Leading/Management experience.If this opportunity appeals to you and aligns closely to your background - please submit your application to Jackie Dean at Jumar for consideration.

Jumar takes great pride in representing socially responsible clients who not only prioritise diversity and inclusion but also actively combat social inequality. Together, we have the power to make a profound impact on fostering a more equitable and inclusive society. By working with us, you become part of a movement dedicated to promoting a diverse and inclusive workforce

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Quantum-Enhanced AI in Data Science: Embracing the Next Frontier

Data science has undergone a staggering transformation in the past decade, evolving from a niche academic discipline into a linchpin of modern industry. Across every sector—finance, healthcare, retail, manufacturing—data scientists have become indispensable, leveraging statistical methods and machine learning to turn raw information into actionable insights. Yet as datasets grow ever larger and machine learning models become more computationally expensive, there are genuine questions about how far current methods can be pushed. Enter quantum computing, a nascent but promising technology grounded in the counterintuitive principles of quantum mechanics. Often dismissed just a few years ago as purely experimental, quantum computing is quickly gaining traction as prototypes evolve into cloud-accessible machines. When paired with artificial intelligence—particularly in the realm of data science—the results could be game-changing. From faster model training and complex optimisation to entirely new forms of data analysis, quantum-enhanced AI stands poised to disrupt established practices and create new opportunities. In this article, we will: Explore how data science has reached its current limits in certain areas, and why classical hardware might no longer suffice. Provide an accessible overview of quantum computing concepts and how they differ from classical systems. Examine the potential of quantum-enhanced AI to solve key data science challenges, from data wrangling to advanced machine learning. Highlight real-world applications, emerging job roles, and the skills you need to thrive in this new landscape. Offer actionable steps for data professionals eager to stay ahead of the curve in a rapidly evolving field. Whether you’re a practising data scientist, a student weighing up your future specialisations, or an executive curious about the next technological leap, read on. The quantum era may be closer than you think, and it promises to radically transform the very fabric of data science.

Data Science Jobs at Newly Funded UK Start-ups: Q3 2025 Investment Tracker

Data science has become an indispensable cornerstone of modern business, driving decisions across finance, healthcare, e-commerce, manufacturing, and beyond. As organisations scramble to capitalise on the insights their data can offer, data scientists and machine learning (ML) experts find themselves in ever-higher demand. In the UK, which has cultivated a robust ecosystem of tech innovation and academic excellence, data-driven start-ups continue to blossom—fuelled by venture capital, government grants, and a vibrant talent pool. In this Q3 2025 Investment Tracker, we delve into the newly funded UK start-ups making waves in data science. Beyond celebrating their funding milestones, we’ll explore the job opportunities these investments have created for aspiring and seasoned data scientists alike. Whether you’re interested in advanced analytics, NLP (Natural Language Processing), computer vision, or MLOps, these start-ups might just offer the career leap you’ve been waiting for.

Portfolio Projects That Get You Hired for Data Science Jobs (With Real GitHub Examples)

Data science is at the forefront of innovation, enabling organisations to turn vast amounts of data into actionable insights. Whether it’s building predictive models, performing exploratory analyses, or designing end-to-end machine learning solutions, data scientists are in high demand across every sector. But how can you stand out in a crowded job market? Alongside a solid CV, a well-curated data science portfolio often makes the difference between getting an interview and getting overlooked. In this comprehensive guide, we’ll explore: Why a data science portfolio is essential for job seekers. Selecting projects that align with your target data science roles. Real GitHub examples showcasing best practices. Actionable project ideas you can build right now. Best ways to present your projects and ensure recruiters can find them easily. By the end, you’ll be equipped to craft a compelling portfolio that proves your skills in a tangible way. And when you’re ready for your next career move, remember to upload your CV on DataScience-Jobs.co.uk so that your newly showcased work can be discovered by employers looking for exactly what you have to offer.