Databricks Developer

FalconSmartIT
London
1 year ago
Applications closed

Related Jobs

View all jobs

IT Data Engineer

IT Data Engineer

IT Data Engineer

Senior Data Engineer (AWS, Airflow, Python)

Senior Data Engineer (AWS, Airflow, Python)

Data Architect - Azure / Databricks - Permanent

Job Title: Databricks Developer

Job Location: London , UK

Job type: Fixed Term Contract


Job Description:

Role: Databricks Developer

  • Responsible for designing, developing, and maintaining data processing pipelines using Databricks platform. Working closely with data engineers and data scientists to implement data solutions that meet business requirements, to help client with their cloud migration journey.
  • It includes the following responsibilities:
  • Designing and developing data pipelines using Databricks platform.
  • Writing efficient and optimized code in languages such as Python, Scala, or SQL.
  • Collaborating with data engineers to ensure data quality and integrity.
  • Implementing data transformations and aggregations to support analytics and reporting.
  • Working with data scientists to deploy machine learning models on Databricks.
  • Troubleshooting and resolving issues related to data pipelines and Databricks environment.
  • Optimizing performance and scalability of Databricks jobs.
  • Documenting technical specifications and maintaining code repositories.
  • Keeping up-to-date with the latest Databricks features and best practices.
  • Participating in code reviews and providing feedback to improve code quality.
  • He/she should have a strong understanding of distributed computing concepts and experience with cloud platforms such as Azure. They should also possess good problem-solving skills and be able to work in a collaborative team environment.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many Data Science Tools Do You Need to Know to Get a Data Science Job?

If you’re trying to break into data science — or progress your career — it can feel like you are drowning in names: Python, R, TensorFlow, PyTorch, SQL, Spark, AWS, Scikit-learn, Jupyter, Tableau, Power BI…the list just keeps going. With every job advert listing a different combination of tools, many applicants fall into a trap: they try to learn everything. The result? Long tool lists that sound impressive — but little depth to back them up. Here’s the straight-talk version most hiring managers won’t explicitly tell you: 👉 You don’t need to know every data science tool to get hired. 👉 You need to know the right ones — deeply — and know how to use them to solve real problems. Tools matter, but only in service of outcomes. So how many data science tools do you actually need to know to get a job? For most job seekers, the answer is not “27” — it’s more like 8–12, thoughtfully chosen and well understood. This guide explains what employers really value, which tools are core, which are role-specific, and how to focus your toolbox so your CV and interviews shine.

What Hiring Managers Look for First in Data Science Job Applications (UK Guide)

If you’re applying for data science roles in the UK, it’s crucial to understand what hiring managers focus on before they dive into your full CV. In competitive markets, recruiters and hiring managers often make their first decisions in the first 10–20 seconds of scanning an application — and in data science, there are specific signals they look for first. Data science isn’t just about coding or statistics — it’s about producing insights, shipping models, collaborating with teams, and solving real business problems. This guide helps you understand exactly what hiring managers look for first in data science applications — and how to structure your CV, portfolio and cover letter so you leap to the top of the shortlist.

The Skills Gap in Data Science Jobs: What Universities Aren’t Teaching

Data science has become one of the most visible and sought-after careers in the UK technology market. From financial services and retail to healthcare, media, government and sport, organisations increasingly rely on data scientists to extract insight, guide decisions and build predictive models. Universities have responded quickly. Degrees in data science, analytics and artificial intelligence have expanded rapidly, and many computer science courses now include data-focused pathways. And yet, despite the volume of graduates entering the market, employers across the UK consistently report the same problem: Many data science candidates are not job-ready. Vacancies remain open. Hiring processes drag on. Candidates with impressive academic backgrounds fail interviews or struggle once hired. The issue is not intelligence or effort. It is a persistent skills gap between university education and real-world data science roles. This article explores that gap in depth: what universities teach well, what they often miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in data science.