Databricks Developer

FalconSmartIT
London
1 year ago
Applications closed

Related Jobs

View all jobs

Azure Data Engineer / BI Developer

Tech Lead - Data Engineer

IT Data Engineer

IT Data Engineer

IT Data Engineer

Azure Data Analyst

Job Title: Databricks Developer

Job Location: London , UK

Job type: Fixed Term Contract


Job Description:

Role: Databricks Developer

  • Responsible for designing, developing, and maintaining data processing pipelines using Databricks platform. Working closely with data engineers and data scientists to implement data solutions that meet business requirements, to help client with their cloud migration journey.
  • It includes the following responsibilities:
  • Designing and developing data pipelines using Databricks platform.
  • Writing efficient and optimized code in languages such as Python, Scala, or SQL.
  • Collaborating with data engineers to ensure data quality and integrity.
  • Implementing data transformations and aggregations to support analytics and reporting.
  • Working with data scientists to deploy machine learning models on Databricks.
  • Troubleshooting and resolving issues related to data pipelines and Databricks environment.
  • Optimizing performance and scalability of Databricks jobs.
  • Documenting technical specifications and maintaining code repositories.
  • Keeping up-to-date with the latest Databricks features and best practices.
  • Participating in code reviews and providing feedback to improve code quality.
  • He/she should have a strong understanding of distributed computing concepts and experience with cloud platforms such as Azure. They should also possess good problem-solving skills and be able to work in a collaborative team environment.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

What Hiring Managers Look for First in Data Science Job Applications (UK Guide)

If you’re applying for data science roles in the UK, it’s crucial to understand what hiring managers focus on before they dive into your full CV. In competitive markets, recruiters and hiring managers often make their first decisions in the first 10–20 seconds of scanning an application — and in data science, there are specific signals they look for first. Data science isn’t just about coding or statistics — it’s about producing insights, shipping models, collaborating with teams, and solving real business problems. This guide helps you understand exactly what hiring managers look for first in data science applications — and how to structure your CV, portfolio and cover letter so you leap to the top of the shortlist.

The Skills Gap in Data Science Jobs: What Universities Aren’t Teaching

Data science has become one of the most visible and sought-after careers in the UK technology market. From financial services and retail to healthcare, media, government and sport, organisations increasingly rely on data scientists to extract insight, guide decisions and build predictive models. Universities have responded quickly. Degrees in data science, analytics and artificial intelligence have expanded rapidly, and many computer science courses now include data-focused pathways. And yet, despite the volume of graduates entering the market, employers across the UK consistently report the same problem: Many data science candidates are not job-ready. Vacancies remain open. Hiring processes drag on. Candidates with impressive academic backgrounds fail interviews or struggle once hired. The issue is not intelligence or effort. It is a persistent skills gap between university education and real-world data science roles. This article explores that gap in depth: what universities teach well, what they often miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in data science.

Data Science Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Thinking about switching into data science in your 30s, 40s or 50s? You’re far from alone. Across the UK, businesses are investing in data science talent to turn data into insight, support better decisions and unlock competitive advantage. But with all the hype about machine learning, Python, AI and data unicorns, it can be hard to separate real opportunities from noise. This article gives you a practical, UK-focused reality check on data science careers for mid-life career switchers — what roles really exist, what skills employers really hire for, how long retraining typically takes, what UK recruiters actually look for and how to craft a compelling career pivot story. Whether you come from finance, marketing, operations, research, project management or another field entirely, there are meaningful pathways into data science — and age itself is not the barrier many people fear.