Data Security Engineer

Bristol
2 weeks ago
Create job alert

Data Security Engineer

Bristol / Edinburgh

Up to £95,000 + great benefits

This business is undergoing a huge technology transformation and are looking for a Data Security Engineer to work with the data teams to ensure that all customer data is secure. The business is making data engineering central to understanding the customer journey, so a the successful Data Security Engineer will be working closely with leadership in both the Cyber and Data teams. This business is going through a big technology transformation programme that is estimated to take 3 -5 years. The successful Data Security Engineer will be part of this journey and have great technical exposure and the ability to rapidly progress.

Data Security Engineer

Duties and Responsibilities

The successful Data Security Engineer will:

  • Supportthe development and implementation of comprehensive data security strategies, policies and procedures.

  • Work with the Enterprise Security Architect to design and deploy security architectures for data protection, including encryption, access controls and data masking

  • Manage data encryption solutions to ensure the confidentiality and integrity of sensitive data.

  • Collaborate across the Security Team to develop and deliver encryption key management processes and systems.

  • Ensure security across the Data & Analytics technology stack consists primarily of: Oracle tools, Snowflake, Postgres, various AWS Services (SageMaker, Lambda, Step Functions, DMS, S3 etc.) in the AWS Cloud.

    Data Security Engineer – Your Background

    The ideal Data Security Engineer will have:

  • Experience in a similar role, in both leadership and Knowledge

  • 3+ years of experience in a hands-on Cyber Security focused role, primarily in the data security domain.

  • A strong & demonstratable knowledge of security frameworks, standards and regulations (NIST, GDPR for example).

  • Familiarity with cloud security principles and experience working with cloud platforms such as AWS and Snowflake.

  • A clear and demonstratable understanding of data science principles and practices.

  • Any security focussed experience with the use of AI Tooling within data science is welcome

Related Jobs

View all jobs

Senior Data Engineer

Azure Data Engineer Lead

AWS Data Engineer

Data Engineer - Salisbury - £55,000-£65,000 - Hybrid

Data Engineer

Data Engineer / Analytics Engineer

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for Data Science Jobs (With Real GitHub Examples)

Data science is at the forefront of innovation, enabling organisations to turn vast amounts of data into actionable insights. Whether it’s building predictive models, performing exploratory analyses, or designing end-to-end machine learning solutions, data scientists are in high demand across every sector. But how can you stand out in a crowded job market? Alongside a solid CV, a well-curated data science portfolio often makes the difference between getting an interview and getting overlooked. In this comprehensive guide, we’ll explore: Why a data science portfolio is essential for job seekers. Selecting projects that align with your target data science roles. Real GitHub examples showcasing best practices. Actionable project ideas you can build right now. Best ways to present your projects and ensure recruiters can find them easily. By the end, you’ll be equipped to craft a compelling portfolio that proves your skills in a tangible way. And when you’re ready for your next career move, remember to upload your CV on DataScience-Jobs.co.uk so that your newly showcased work can be discovered by employers looking for exactly what you have to offer.

Data Science Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Data science has become one of the most sought‑after fields in technology, leveraging mathematics, statistics, machine learning, and programming to derive valuable insights from data. Organisations across every sector—finance, healthcare, retail, government—rely on data scientists to build predictive models, understand patterns, and shape strategy with data‑driven decisions. If you’re gearing up for a data science interview, expect a well‑rounded evaluation. Beyond statistics and algorithms, many roles also require data wrangling, visualisation, software engineering, and communication skills. Interviewers want to see if you can slice and dice messy datasets, design experiments, and scale ML models to production. In this guide, we’ll explore 30 real coding & system‑design questions commonly posed in data science interviews. You’ll find challenges ranging from algorithmic coding and statistical puzzle‑solving to the architectural side of building data science platforms in real‑world settings. By practising with these questions, you’ll gain the confidence and clarity needed to stand out among competitive candidates. And if you’re actively seeking data science opportunities in the UK, be sure to visit www.datascience-jobs.co.uk. It’s a comprehensive hub featuring junior, mid‑level, and senior data science vacancies—spanning start‑ups to FTSE 100 companies. Let’s dive into what you need to know.

Negotiating Your Data Science Job Offer: Equity, Bonuses & Perks Explained

Data science has rapidly evolved from a niche specialty to a cornerstone of strategic decision-making in virtually every industry—from finance and healthcare to retail, entertainment, and AI research. As a mid‑senior data scientist, you’re not just running predictive models or generating dashboards; you’re shaping business strategy, product innovation, and customer experiences. This level of influence is why employers are increasingly offering compensation packages that go beyond a baseline salary. Yet, many professionals still tend to focus almost exclusively on base pay when negotiating a new role. This can be a costly oversight. Companies vying for data science talent—especially in the UK, where demand often outstrips supply—routinely offer equity, bonuses, flexible work options, and professional development funds in addition to salary. Recognising these opportunities and effectively negotiating them can have a substantial impact on your total earnings and long-term career satisfaction. This guide explores every facet of negotiating a data science job offer—from understanding equity structures and bonus schemes to weighing crucial perks like remote work and ongoing skill development. By the end, you’ll be well-equipped to secure a holistic package aligned with your market value, your life goals, and the tremendous impact you bring to any organisation.