Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Data Scientist (Marketing)

Runna
London
6 months ago
Applications closed

Related Jobs

View all jobs

Data Scientist

Data Scientist

Data Scientist

Data Scientist

Data Scientist (Optimisation)

Data Scientist - Tax & Legal

Get AI-powered advice on this job and more exclusive features.

We help everyday runners become outstanding by providing world-class training, coaching and community for everyone, whether youre improving your 5k time or training for your first marathon. To date we have built iOS, Android and Apple watch apps that help people achieve their goals by coaching them through the full journey and syncing to their favourite fitness devices.

Were growing extremely fast and in November 2023 closed a new $6.5M funding round led by JamJar with participation from Eka Ventures, Venrex and Creator Ventures. In 2024, we were selected by Apple as one of three global finalists for the 2024 iPhone App of the Year, reflecting the innovation and impact of what weve built. We want to grow as fast as we can into the future and are looking for individuals who will help us get there. For more about our background and growth check out our Careers Page!

Were now looking ahead to the future and the people who want to help us build and scale Runna. Our aim is to reach millions of subscribers in the next 5 years and be the go-to training platform for any runner. Now is a magical time to join, were still small, and everyone makes a foundational difference.

Who Were Looking For

We are looking for a talented, hands-on, and experienced problem solver to join our highly skilledcross-functional engineering teamas our first Data Scientist focusing on Marketing Analytics. In this role, you will work closely with our growth, product, and engineering teams to analyze user behaviour, optimise marketing strategies, and drive data-informed decisions that enhance user acquisition and retention. You will collaborate directly with our Head of Growth and CTO to help shape the future of Runna, receiving support throughout this exciting journey.

As a Data Scientist (Marketing), your role will include:

  • Data Modelling: Help develop and optimise predictive models to forecast user engagement and lifetime value. These models will guide our decision making, helping us acquire the right users and maximise ROI.
  • Marketing Measurement: You will have full ownership of our marketing measurement strategy from attribution modeling to incrementality testing - ensuring we have a crystal-clear view of what drives performance across our marketing mix.
  • Data Analytics: Analyse large datasets to extract actionable insights on user behaviour, marketing campaign performance, and customer segmentation.
  • Marketing Optimisation: Collaborate with the performance marketing team to design and evaluate A/B tests, Lift Studies and Incrementality testing that will optimise customer acquisition channels, and improve conversion rates. Provide data-driven recommendations to enhance marketing ROI.
  • Continuous Improvement: Stay abreast of industry trends, emerging technologies, and best practices in data science and marketing analytics. Propose and implement improvements to existing data processes and methodologies, working with engineering to drive automation.

Requirements
What experience were looking for
If you dont quite meet all of the below skills, wed still love to hear from you as we might be able to tweak the role slightly or offer you a position better suited for you. You can apply directly below or contact us if youre still unsure.

Your key experience:

  • 3+ years of experience in data science, with a focus on marketing analytics or a similar role.
  • Strong statistical analysis and modeling skills. Experience with A/B testing, cohort analysis, and predictive modeling techniques.
  • Youve had experience or lead the development of a pLTV model.

Your key skills:

  • Proficiency with Python programming.
  • Proficiency with SQL and experience with relational databases (e.g. Amazon Redshift, Snowflake) and bonus points if you have experience with NoSQL databases (e.g. DynamoDB), and graph databases (e.g. Amazon Neptune).
  • Familiarity with analytics tools across the modern data and MarTech stack (e.g. SQL, python, Jupyter Notebooks, BI tools, Google Tag Manager, Mixpanel, Looker).
  • Understanding of digital marketing channels, metrics, and strategies. Experience analysing data from various marketing platforms (e.g., Meta, Google Ads, Google Analytics).
  • Ability to translate complex data insights into clear, actionable recommendations for non-technical stakeholders.
  • Analytical and detail-oriented, with a commitment to producing high-quality work.
  • Able to work within a highly-skilled engineering team in a fast-paced, iterative environment.

Bonus points if you:

  • Are able to quickly pick up new skills when necessary or are happy to step outside your comfort zone to try something new - such as implementing tracking pixels, building data pipelines, or stitching data together across disparate data sources.
  • Have experience working with a B2C subscription business model.
  • Have a strong interest in the health/fitness technologies.

Our tech stack
Below you can find a small reflection of our current tech stack:
Frontend:

  • React Native (iOS and Android).
  • Typescript.
  • GraphQL (Apollo Client).
  • Fastlane.
  • SwiftUI (Apple Watch).
  • Maestro E2E tests.

Backend:

  • Serverless (AWS).
  • Lambdas (NodeJS & Python).
  • AWS AppSync.
  • DynamoDB, S3, SQS, SNS, EventBridge, SageMaker.
  • Postman API tests.

All the other good stuff:

  • Sentry.
  • GitHub Actions.
  • Intercom, Mixpanel.
  • RevenueCat.
  • App Store Connect / Play Store.
  • Google Tag Manager.

Benefits
Benefits and options

  • Based on years of direct, relevant experience. Level IV £80-95k.

Well be growing our package of benefits over time. We currently offer:

  • Flexible working (we typically work 2-3 days in our office in Vauxhall).
  • Salary reviews every 6 months or whenever we raise more investment.
  • 25 days of holiday plus bank holidays.
  • A workplace pension scheme.
  • A brand new Macbook, a running watch of your choice, and anything else you need to do your best work.
  • Private health insurance.
  • Enhanced family care policy (3 months fully paid leave when a new Runna joins the family, fertility support & other benefits).
  • An hour slot each week (during work time) to do a Runna workout.

How to apply
To apply, please apply HERE and well take it from there!

  • Please let us know if theres anything we can do to better accommodate you throughout the interview process - this can be from scheduling interviews around childcare commitments to accessibility requirements. We want you to show your best self in the process.

Seniority level

  • Mid-Senior level

Employment type

  • Full-time

Job function

  • Engineering and Information Technology

Industries

  • Non-profit Organizations and Primary and Secondary Education

J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK data science hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise rigorous problem framing, high‑quality analytics & modelling, experiment/causality, production awareness (MLOps), governance/ethics, and measurable product or commercial impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for product/data scientists, applied ML scientists, decision scientists, econometricians, growth/marketing analysts, and ML‑adjacent data scientists supporting LLM/AI products. Who this is for: Product/decision/data scientists, applied ML scientists, econometrics & causal inference specialists, experimentation leads, analytics engineers crossing into DS, ML generalists with strong statistics, and data scientists collaborating with platform/MLOps teams in the UK.

Why Data Science Careers in the UK Are Becoming More Multidisciplinary

Data science once meant advanced statistics, machine learning models and coding in Python or R. In the UK today, it has become one of the most in-demand professions across sectors — from healthcare to finance, retail to government. But as the field matures, employers now expect more than technical modelling skills. Modern data science is multidisciplinary. It requires not just coding and algorithms, but also legal knowledge, ethical reasoning, psychological insight, linguistic clarity and human-centred design. Data scientists are expected to interpret, communicate and apply data responsibly, with awareness of law, human behaviour and accessibility. In this article, we’ll explore why data science careers in the UK are becoming more multidisciplinary, how these five disciplines intersect with data science, and what job-seekers & employers need to know to succeed in this transformed field.

Data Science Team Structures Explained: Who Does What in a Modern Data Science Department

Data science is one of the most in-demand, dynamic, and multidisciplinary areas in the UK tech and business landscape. Organisations from finance, retail, health, government, and beyond are using data to drive decisions, automate processes, personalise services, predict trends, detect fraud, and more. To do that well, companies don’t just need good data scientists; they need teams with clearly defined roles, responsibilities, workflows, collaboration, and governance. If you're aiming for a role in data science or recruiting for one, understanding the structure of a data science department—and who does what—can make all the difference. This article breaks down the key roles, how they interact across the lifecycle of a data science project, what skills and qualifications are typical in the UK, expected salary ranges, challenges, trends, and how to build or grow an effective team.