Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Data Scientist II – QuantumBlack, AI by McKinsey

QuantumBlack, AI by McKinsey
City of London
2 weeks ago
Create job alert
Data Scientist II – QuantumBlack, AI by McKinsey

Join to apply for the Data Scientist II – QuantumBlack, AI by McKinsey role at QuantumBlack, AI by McKinsey.


Who You'll Work With

Driving lasting impact and building long‑term capabilities with our clients is not easy work. You are the kind of person who thrives in a high performance/high reward culture, doing hard things, picking yourself up when you stumble, and having the resilience to try another way forward.


Benefits

  • Continuous learning: Our learning and apprenticeship culture, backed by structured programs, is all about helping you grow while creating an environment where feedback is clear, actionable, and focused on your development.
  • A voice that matters: From day one, we value your ideas and contributions. You’ll make a tangible impact by offering innovative ideas and practical solutions.
  • Global community: With colleagues across 65+ countries and over 100 different nationalities, our firm’s diversity fuels creativity and helps us come up with the best solutions for our clients.
  • World‑class benefits: On top of a competitive salary (based on your location, experience, and skills), we provide a comprehensive benefits package to enable holistic well‑being for you and your family.

Your Impact

As a Data Scientist II, you will collaborate with clients and interdisciplinary teams to develop advanced analytics solutions, optimize code, and solve complex business challenges across industries. You’ll translate business challenges into analytical problems, build models to solve them, and ensure they are evaluated with relevant metrics. You’ll contribute to internal tools, participate in R&D projects, and have opportunities to attend and present at leading conferences.


Qualifications

  • Master’s or PhD in Computer Science, Machine Learning, Applied Statistics, Mathematics, Engineering, Physics, or other technical fields.
  • 2–5+ years of professional experience applying machine learning and data mining techniques to solve real‑world problems with substantial data sets.
  • Programming experience: SQL and Python’s Data Science stack; knowledge of at least one big data framework (e.g., PySpark, Hive, Hadoop) is a plus.
  • Strong understanding of machine learning methods and experience applying them to complex, data‑rich environments.
  • Ability to prototype and deploy statistical and machine learning algorithms, and translate analytical outputs into data‑driven solutions.
  • Experience deploying ML/AI technologies into production or applied business environments is a plus.
  • Excellent time management skills to handle responsibilities in a complex and largely autonomous environment.
  • Willingness to travel.
  • Strong communication skills, both verbal and written, in English.


#J-18808-Ljbffr

Related Jobs

View all jobs

Data Engineer II – QuantumBlack, AI by McKinsey

Data Scientist II, Search Analytics

Data Scientist II, Marketing Analytics

Data Scientist II, Marketing Analytics

Search - Workchat - Applied Data Scientist II

Search - Workchat - Applied Data Scientist II

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK data science hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise rigorous problem framing, high‑quality analytics & modelling, experiment/causality, production awareness (MLOps), governance/ethics, and measurable product or commercial impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for product/data scientists, applied ML scientists, decision scientists, econometricians, growth/marketing analysts, and ML‑adjacent data scientists supporting LLM/AI products. Who this is for: Product/decision/data scientists, applied ML scientists, econometrics & causal inference specialists, experimentation leads, analytics engineers crossing into DS, ML generalists with strong statistics, and data scientists collaborating with platform/MLOps teams in the UK.

Why Data Science Careers in the UK Are Becoming More Multidisciplinary

Data science once meant advanced statistics, machine learning models and coding in Python or R. In the UK today, it has become one of the most in-demand professions across sectors — from healthcare to finance, retail to government. But as the field matures, employers now expect more than technical modelling skills. Modern data science is multidisciplinary. It requires not just coding and algorithms, but also legal knowledge, ethical reasoning, psychological insight, linguistic clarity and human-centred design. Data scientists are expected to interpret, communicate and apply data responsibly, with awareness of law, human behaviour and accessibility. In this article, we’ll explore why data science careers in the UK are becoming more multidisciplinary, how these five disciplines intersect with data science, and what job-seekers & employers need to know to succeed in this transformed field.

Data Science Team Structures Explained: Who Does What in a Modern Data Science Department

Data science is one of the most in-demand, dynamic, and multidisciplinary areas in the UK tech and business landscape. Organisations from finance, retail, health, government, and beyond are using data to drive decisions, automate processes, personalise services, predict trends, detect fraud, and more. To do that well, companies don’t just need good data scientists; they need teams with clearly defined roles, responsibilities, workflows, collaboration, and governance. If you're aiming for a role in data science or recruiting for one, understanding the structure of a data science department—and who does what—can make all the difference. This article breaks down the key roles, how they interact across the lifecycle of a data science project, what skills and qualifications are typical in the UK, expected salary ranges, challenges, trends, and how to build or grow an effective team.