National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Data Scientist II...

Amazon
London
1 day ago
Create job alert

AWS Infrastructure Services owns the design, planning, delivery, and operation of all AWS global infrastructure. In other words, we’re the people who keep the cloud running. We support all AWS data centers and all of the servers, storage, networking, power, and cooling equipment that ensure our customers have continual access to the innovation they rely on. We work on the most challenging problems, with thousands of variables impacting the supply chain — and we’re looking for talented people who want to help.

You’ll join a diverse team of software, hardware, and network engineers, supply chain specialists, security experts, operations managers, and other vital roles. You’ll collaborate with people across AWS to help us deliver the highest standards for safety and security while providing seemingly infinite capacity at the lowest possible cost for our customers. And you’ll experience an inclusive culture that welcomes bold ideas and empowers you to own them to completion.

Do you love problem solving? Are you looking for real world Supply Chain challenges? Do you have a desire to make a major contribution to the future, in the rapid growth environment of Cloud Computing?

Amazon Web Services is looking for a highly motivated Data Scientist to help build scalable, predictive and prescriptive business analytics solutions that supports AWS Supply Chain and Procurement organization. You will be part of the Supply Chain Analytics team working with Global Stakeholders, Data Engineers, Business Intelligence Engineers and Business Analysts to achieve our goals.

We are seeking an innovative and technically strong data scientist with a background in optimization, machine learning, and statistical modeling/analysis. This role requires a team member to have strong quantitative modeling skills and the ability to apply optimization/statistical/machine learning methods to complex decision-making problems, with data coming from various data sources. The candidate should have strong communication skills, be able to work closely with stakeholders and translate data-driven findings into actionable insights. The successful candidate will be a self-starter, comfortable with ambiguity, with strong attention to detail and ability to work in a fast-paced and ever-changing environment.

Key job responsibilities

  1. Demonstrate thorough technical knowledge on feature engineering of massive datasets, effective exploratory data analysis, and model building using industry standard time Series Forecasting techniques like ARIMA, ARIMAX, Holt Winter and formulate ensemble model.
  2. Proficiency in both Supervised (Linear/Logistic Regression) and Unsupervised algorithms (k means clustering, Principal Component Analysis, Market Basket analysis).
  3. Experience in solving optimization problems like inventory and network optimization. Should have hands on experience in Linear Programming.
  4. Work closely with internal stakeholders like the business teams, engineering teams and partner teams and align them with respect to your focus area.
  5. Detail-oriented and must have an aptitude for solving unstructured problems. You should work in a self-directed environment, own tasks and drive them to completion.
  6. Excellent business and communication skills to be able to work with business owners to develop and define key business questions and to build data sets that answer those questions.
  7. Work with distributed machine learning and statistical algorithms to harness enormous volumes of data at scale to serve our customers.

    About the team

    Diverse Experiences: Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying.

    Why AWS

    Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses.

    Work/Life Balance

    We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve.

    Inclusive Team Culture

    AWS values curiosity and connection. Our employee-led and company-sponsored affinity groups promote inclusion and empower our people to take pride in what makes us unique. Our inclusion events foster stronger, more collaborative teams. Our continual innovation is fueled by the bold ideas, fresh perspectives, and passionate voices our teams bring to everything we do.

    Mentorship and Career Growth

    We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.

    BASIC QUALIFICATIONS

  • 5+ years of data scientist experience
  • 4+ years of data querying languages (e.g. SQL), scripting languages (e.g. Python) or statistical/mathematical software (e.g. R, SAS, Matlab, etc.) experience
  • 3+ years of machine learning/statistical modeling data analysis tools and techniques, and parameters that affect their performance experience
  • Experience applying theoretical models in an applied environment

    PREFERRED QUALIFICATIONS

  • Experience in Python, Perl, or another scripting language
  • Experience in a ML or data scientist role with a large technology company
  • Functional knowledge of AWS platforms such as S3, Glue, Athena, Sagemaker, Lambda, EC2, Batch, Step Function.
  • Experience in creating powerful data driven visualizations to describe your ML modeling results to stakeholders.

    Our inclusive culture empowers Amazonians to deliver the best results for our customers. If you have a disability and need a workplace accommodation or adjustment during the application and hiring process, including support for the interview or onboarding process, please visithttps://amazon.jobs/content/en/how-we-hire/accommodationsfor more information. If the country/region you’re applying in isn’t listed, please contact your Recruiting Partner.

    Amazon is an equal opportunity employer and does not discriminate on the basis of protected veteran status, disability, or other legally protected status.

    #J-18808-Ljbffr

Related Jobs

View all jobs

Data Scientist II, Data Scientist II - AOP Team

Data Scientist II, Regulatory, Intelligence, Safety and Compliance (RISC)

Data Scientist II, Regulatory Intelligence, Safety, and Compliance (RISC)

Data Scientist II (Marketing Testing)

Data Scientist II, JWO

Data Scientist II, SAnDS

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Jobs UK 2025: 50 Companies Hiring Now

Bookmark this guide—refreshed every quarter—so you always know who’s really expanding their data‑science teams. Budgets for predictive analytics, GenAI pilots & real‑time decision engines keep climbing in 2025. The UK’s National AI Strategy, tax relief for R&D & a sharp rise in cloud adoption mean employers need applied scientists, ML engineers, experiment designers, causal‑inference specialists & analytics leaders—right now. Below you’ll find 50 organisations that have advertised UK‑based data‑science vacancies or announced head‑count growth during the past eight weeks. They’re grouped into five quick‑scan categories so you can jump straight to the kind of employer—& culture—that suits you. For every company you’ll see: Main UK hub Example live or recent vacancy Why it’s worth a look (tech stack, mission, culture) Search any employer on DataScience‑Jobs.co.uk to view current ads, or set up a free alert so fresh openings land straight in your inbox.

Return-to-Work Pathways: Relaunch Your Data Science Career with Returnships, Flexible & Hybrid Roles

Returning to work after an extended break can feel like stepping into a whole new world—especially in a dynamic field like data science. Whether you paused your career for parenting, caring responsibilities or another life chapter, the UK’s data science sector now offers a variety of return-to-work pathways. From structured returnships to flexible and hybrid roles, these programmes recognise the transferable skills and resilience you’ve gained and provide mentorship, upskilling and supportive networks to ease your transition back. In this guide, you’ll discover how to: Understand the current demand for data science talent in the UK Leverage your organisational, communication and analytical skills in data science roles Overcome common re-entry challenges with practical solutions Refresh your technical knowledge through targeted learning Access returnship and re-entry programmes tailored to data science Find roles that fit around family commitments—whether flexible, hybrid or full-time Balance your career relaunch with caring responsibilities Master applications, interviews and networking specific to data science Learn from inspiring returner success stories Get answers to common questions in our FAQ section Whether you aim to return as a data analyst, machine learning engineer, data visualisation specialist or data science manager, this article will map out the steps and resources you need to reignite your data science career.

LinkedIn Profile Checklist for Data Science Jobs: 10 Tweaks to Elevate Recruiter Engagement

Data science recruiters often sift through dozens of profiles to find candidates skilled in Python, machine learning, statistical modelling and data visualisation—sometimes before roles even open. A generic LinkedIn profile won’t suffice in this data-driven era. This step-by-step LinkedIn for data science jobs checklist outlines ten targeted tweaks to elevate recruiter engagement. Whether you’re an aspiring junior data scientist, a specialist in MLOps, or a seasoned analytics leader, these optimisations will sharpen your profile’s search relevance and demonstrate your analytical impact.