Data Scientist | Equity (L/S) Hedge Fund

Selby Jennings
City of London
3 weeks ago
Create job alert
Data Scientist | Equity (L/S) Hedge Fund

A newly launched long/short hedge fund is seeking a Data Scientist to join its investment team. This is a high-impact role where applied data science is central to generating differentiated insights and driving portfolio performance.

About the Role

You’ll work closely with investors and engineers to source, structure, and analyze real-world datasets, build predictive models, and create outputs that directly inform investment decisions. The role combines data origination with advanced analytics – expect to work with large-scale alternative data, develop KPI forecasting models, and design dashboards that track fundamentals in real time.

Key Responsibilities
  • Originate and evaluate novel datasets (e.g., supply chain, geospatial, IoT, pricing, web activity) and manage onboarding of new vendors.
  • Collaborate with the investment team to translate hypotheses into data-driven projects with measurable impact.
  • Build predictive models for company KPIs using econometrics, statistical methods, and machine learning.
  • Design and maintain dashboards to monitor fundamentals and calibrate investment theses.
  • Work with engineers to integrate models and dashboards into a scalable data platform.
  • Apply AI/ML techniques (e.g., NLP, knowledge graphs) to link and organize datasets across companies and sectors.
Ideal Candidate Profile
  • Strong Python skills (pandas, NumPy, scikit-learn; familiarity with PyTorch/TensorFlow a plus).
  • Proficiency in SQL and experience handling large datasets; Tableau or similar BI tools for dashboards.
  • 3+ years’ experience applying advanced analytics or ML to real-world data, ideally in finance, supply chain, or predictive modeling contexts.
  • Strong quantitative background (Math, Physics, Computer Science, Econometrics, or related fields).
  • Demonstrated ability to source and leverage new datasets, not just standard financials.
  • Excellent communication skills and ability to collaborate across investment and technical teams.
Why This Role Is Exciting

You’ll have direct exposure to the founders, CIO, senior traders, and heads of key functions – giving you unparalleled insight into investment strategy and decision-making. This is a rare opportunity to shape a data science capability from the ground up while working alongside some of the most respected professionals in the industry.

If you feel this is a good match – apply today!

Seniority level

Entry level

Employment type

Full-time

Job function

Engineering, Information Technology, and Research

Industries

Investment Management

Referrals increase your chances of interviewing at Selby Jennings by 2x


#J-18808-Ljbffr

Related Jobs

View all jobs

Data Analyst

Data Scientist: AI for Engineering Simulations (Hybrid, Equity)

Staff Data Scientist: Vision & Authenticity AI (Equity)

Data Scientist and Developer

Data Scientist

Data Scientist

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Thinking about switching into data science in your 30s, 40s or 50s? You’re far from alone. Across the UK, businesses are investing in data science talent to turn data into insight, support better decisions and unlock competitive advantage. But with all the hype about machine learning, Python, AI and data unicorns, it can be hard to separate real opportunities from noise. This article gives you a practical, UK-focused reality check on data science careers for mid-life career switchers — what roles really exist, what skills employers really hire for, how long retraining typically takes, what UK recruiters actually look for and how to craft a compelling career pivot story. Whether you come from finance, marketing, operations, research, project management or another field entirely, there are meaningful pathways into data science — and age itself is not the barrier many people fear.

How to Write a Data Science Job Ad That Attracts the Right People

Data science plays a critical role in how organisations across the UK make decisions, build products and gain competitive advantage. From forecasting and personalisation to risk modelling and experimentation, data scientists help translate data into insight and action. Yet many employers struggle to attract the right data science candidates. Job adverts often generate high volumes of applications, but few applicants have the mix of analytical skill, business understanding and communication ability the role actually requires. At the same time, experienced data scientists skip over adverts that feel vague, inflated or misaligned with real data science work. In most cases, the issue is not a lack of talent — it is the quality and clarity of the job advert. Data scientists are analytical, sceptical of hype and highly selective. A poorly written job ad signals unclear expectations and immature data practices. A well-written one signals credibility, focus and serious intent. This guide explains how to write a data science job ad that attracts the right people, improves applicant quality and positions your organisation as a strong data employer.

Maths for Data Science Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are applying for data science jobs in the UK, the maths can feel like a moving target. Job descriptions say “strong statistical knowledge” or “solid ML fundamentals” but they rarely tell you which topics you will actually use day to day. Here’s the truth: most UK data science roles do not require advanced pure maths. What they do require is confidence with a tight set of practical topics that come up repeatedly in modelling, experimentation, forecasting, evaluation, stakeholder comms & decision-making. This guide focuses on the only maths most data scientists keep using: Statistics for decision making (confidence intervals, hypothesis tests, power, uncertainty) Probability for real-world data (base rates, noise, sampling, Bayesian intuition) Linear algebra essentials (vectors, matrices, projections, PCA intuition) Calculus & gradients (enough to understand optimisation & backprop) Optimisation & model evaluation (loss functions, cross-validation, metrics, thresholds) You’ll also get a 6-week plan, portfolio projects & a resources section you can follow without getting pulled into unnecessary theory.