Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Data Scientist - Engineer Data Engineering · London, UK · Hybrid

Limelight Health
City of London
1 week ago
Create job alert

We are Manufacturing the Future!
Geomiq is revolutionizing traditional manufacturing by providing engineers worldwide with instant access to reliable production methods through our digital platform. As the UK’s leading Digital Manufacturing Marketplace, we offer an AI-powered B2B MaaS (Manufacturing as a Service) solution, seamlessly connecting buyers and suppliers to drive efficiency and innovation.

With our headquarters in London and quality branches in India, China, and Portugal, we collaborate with leading brands like BMW, Rolls-Royce, Brompton Bikes, and Google—even contributing to space exploration.

Our platform:
Geomiq offers a revolutionary platform that completely digitizes the quoting and ordering process for custom manufactured parts, ensuring the highest operational and quality outcomes. Our primary customers include Design Engineers, Mechanical Engineers, and Procurement teams, all of whom are involved in creating the world’s most innovative products.

About the role:

This is a hybrid role that combines Data Engineering and Data Science, with a strong focus on applying AI in practical ways. You’ll be responsible for everything from ingesting and transforming data to building dashboards, running experiments, and deploying lightweight AI-powered solutions into production.
You’ll work directly with the product and operations teams to solve real business problems fast — with full autonomy and a mandate to make things happen.Important: This is not an academic AI/ML role. You won’t be building LLMs from scratch. Instead, you’ll use off-the-shelf models, prompt engineering, and smart automation to drive outcomes.

Main responsibilities:

Data Engineering

  • Maintain and evolve pipelines (BigQuery + dbt)
  • Design and manage ETL/ELT workflows, including API ingestion (e.g. Monday, HubSpot)
  • Build data marts, internal views, and support dashboarding
  • Ensure clean, well-documented, and reliable data flows

Data Science & Analytics

  • Own deep-dive analysis (e.g. On-Time Delivery %, NCR trends, quote conversion)
  • Collaborate with ops/product to identify high-leverage data opportunities
  • Design and analyze A/B tests
  • Create dashboards and datasets for sales, quality, and production teams

Applied AI (Using Existing Models)

  • Apply LLMs (e.g. GPT, Claude, Gemini) to workflows and internal tools
  • Fine-tune or prompt models for tasks like:
  • NCR root cause suggestions
  • Supplier performance classification
  • Delivery risk flagging
  • Deploy lightweight APIs using FastAPI or Flask (GCP Cloud Run + Docker)
Experience Required:
  • Direct, hands-on experience with GCP (BigQuery, Vertex AI, Cloud Run)
  • Strong SQL complex querying
  • Python for analytics, backend logic, and model prototyping
  • Familiarity with LLM APIs, prompt engineering, embeddings, and traditional ML (e.g. XGBoost, scikit-learn)
  • Comfortable deploying tools using Docker, Flask/FastAPI, and GCP services
  • Ability to work independently and iterate quickly toward high-quality outcomes
  • Full-stack data capability, from pipelines to dashboards to AI-powered APIs
  • Hands-on, impact-driven, and solution-oriented approach
  • Experience applying existing ML/LLM tools to automate or enhance workflows
  • Ability to thrive in lean teams and take full ownership of the data domain
Desired experience:
  • Experience with Metabase and dbt
  • Familiarity with manufacturing, logistics, or supplier operations
  • Experience building internal agents, dashboards, or automation tools
  • Light exposure to data governance or compliance
  • Interest in working at the intersection of manufacturing, data, and AI
Benefits:
  • Working directly with the leadership team
  • High growth /high impact position
  • Competitive Salary: We offer pay that reflects your skills and the value you bring.
  • Stocked Kitchen: Enjoy snacks, fresh fruit, and drinks all day.
  • 23 Days Annual Leave: Recharge with 23 days off, plus bank holidays.
  • Birthday Off: Take an extra day to celebrate your birthday.
  • Christmas Shutdown: Relax over the holidays with additional company-wide time off.
  • Pet-Friendly Office: Bring your dog to our pet-friendly workspace.
  • Team Events: Connect with colleagues through monthly team-building activities.
  • Career Growth: Benefit from our focus on internal promotions and development.
  • Cycle to Work Scheme: Save on commuting, reduce emissions, and stay active.
  • Expanding Perks: Look forward to more benefits as we grow


#J-18808-Ljbffr

Related Jobs

View all jobs

Data Scientist

Data Scientist

Data Scientist

Data Scientist

Data Scientist

Data Scientist - Palantir

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Why Data Science Careers in the UK Are Becoming More Multidisciplinary

Data science once meant advanced statistics, machine learning models and coding in Python or R. In the UK today, it has become one of the most in-demand professions across sectors — from healthcare to finance, retail to government. But as the field matures, employers now expect more than technical modelling skills. Modern data science is multidisciplinary. It requires not just coding and algorithms, but also legal knowledge, ethical reasoning, psychological insight, linguistic clarity and human-centred design. Data scientists are expected to interpret, communicate and apply data responsibly, with awareness of law, human behaviour and accessibility. In this article, we’ll explore why data science careers in the UK are becoming more multidisciplinary, how these five disciplines intersect with data science, and what job-seekers & employers need to know to succeed in this transformed field.

Data Science Team Structures Explained: Who Does What in a Modern Data Science Department

Data science is one of the most in-demand, dynamic, and multidisciplinary areas in the UK tech and business landscape. Organisations from finance, retail, health, government, and beyond are using data to drive decisions, automate processes, personalise services, predict trends, detect fraud, and more. To do that well, companies don’t just need good data scientists; they need teams with clearly defined roles, responsibilities, workflows, collaboration, and governance. If you're aiming for a role in data science or recruiting for one, understanding the structure of a data science department—and who does what—can make all the difference. This article breaks down the key roles, how they interact across the lifecycle of a data science project, what skills and qualifications are typical in the UK, expected salary ranges, challenges, trends, and how to build or grow an effective team.

Why the UK Could Be the World’s Next Data Science Jobs Hub

Data science is arguably the most transformative technological field of the 21st century. From powering artificial intelligence algorithms to enabling complex business decisions, data science is essential across sectors. As organisations leverage data more rapidly—from retailers predicting customer behaviour to health providers diagnosing conditions—demand for proficiency in data science continues to surge. The United Kingdom is particularly well-positioned to become a global data science jobs hub. With world-class universities, a strong tech sector, growing AI infrastructure, and supportive policy environments, the UK is poised for growth. This article delves into why the UK could emerge as a leading destination for data science careers, explores the job market’s current state, outlines future opportunities, highlights challenges, and charts what must happen to realise this vision.