National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Data Scientist - Energy Systems Validation (Energy Sector Experience Required)

GE Vernova
Stafford
1 month ago
Create job alert

Job Description Summary
GE Vernova is accelerating the path to more reliable, affordable, and sustainable energy, while helping our customers power economies and deliver GE Vernova is accelerating the path to more reliable, affordable, and sustainable energy, while helping our customers power economies and deliver the electricity that is vital to health, safety, security, and improved quality of life. Are you excited at the opportunity to electrify and decarbonize the world?

We are seeking a highly skilled and results-driven Data Scientist - Validation to join our team, primarily focusing on validating AI/ML models for grid innovation applications. This role will involve rigorous testing, validation, and verification of AI/ML models with grid data to ensure they meet accuracy, performance, and operational standards within energy systems. Reporting to the AI leader in the CTO organization, the Data Scientist will collaborate closely with Grid Automation (GA) product lines, R&D teams, product management, and other GA functions.

The ideal candidate will have significant experience in the energy sector, specifically in energy systems and grid automation, or in related domains such as smart infrastructure (e.g., connected buildings, utilities) or industrial automation (e.g., SCADA, PLC systems, Industry 4.0). They should have a strong understanding of how to apply data science and data engineering techniques to develop, validate, and enhance AI/ML models within these complex and data-rich environments.

Job Description

Essential Responsibilities:

  • Design and conduct experiments to test and validate AI/ML models in the context of energy systems and grid automation applications.
  • Establish clear validation frameworks to ensure models meet required performance standards and business objectives.
  • Establish test procedures to validate models with real and simulated grid data.
  • Analyze model performance against real-world data to ensure accuracy, reliability, and scalability.
  • Identify and address discrepancies between expected and actual model behavior, providing actionable insights to improve model performance.
  • Implement automated testing strategies and pipeline to streamline model validation processes.
  • Collaborate with Data Engineers and ML Engineers to improve data quality, enhance model performance, and ensure efficient deployment of validated models.
  • Ensure that validation processes adhere to data governance policies and industry standards.
  • Communicate validation results, insights, and recommendations clearly to stakeholders, including product managers and leadership teams.


Must-Have Requirements

  • PhD, Master's, or Bachelor's degree in Data Science, Computer Science, Electrical Engineering, or a related field with hands-on experience in model validation.
  • Significant experience working in the energy sector, particularly in energy systems, grid automation, or smart grid technologies.
  • Solid experience in validating AI/ML models, ensuring they meet business and technical requirements.
  • Strong knowledge of statistical techniques, model performance metrics, and validation methodologies for AI/ML models.
  • Proficiency in programming languages such as Python, R, or MATLAB.
  • Experience with data wrangling, feature engineering, and preparing datasets for model validation.
  • Familiarity with machine learning frameworks (e.g., TensorFlow, PyTorch, Scikit-learn) and model evaluation techniques.
  • Experience with cloud platforms (e.g., AWS, Azure, GCP) and deployment of models in cloud environments.
  • Experience with data visualization tools such as Tableau, Power BI, or similar to effectively present validation results and insights.


Nice-to-Have Requirements:

  • Familiarity with big data tools and technologies, such as Hadoop, Kafka, and Spark.
  • Familiarity with data governance frameworks and validation standards in the energy sector.
  • Knowledge of distributed computing environments and model deployment at scale.
  • Strong communication skills, with the ability to clearly explain complex validation results to non-technical stakeholders.


At GE Vernova - Grid Automation, you will have the opportunity to work on cutting-edge projects that shape the future of energy. We offer a collaborative environment where your expertise will be valued, and your contributions will make a tangible impact. Join us and be part of a team that is driving innovation and excellence in control systems.

AboutGEVGrid Solutions:

At GEV Grid Solutions we are electrifying the world with advanced grid technologies. As leaders in the energy space our goal is to accelerate the transition for a more energy efficient grid to full fill the needs of tomorrow. With a focus on growth and sustainability GE Grid Solutions plays a pivotable role in integrating Renewables onto the grid to drive to carbon neutral. In Grid Solutions we help enable the transition for a greener more reliable Grid. GE Grid Solutions has the most advanced and comprehensive product and solutions portfolio within the energy sector.

Why we come to work:

At GEV, our engineers are always up for the challenge - and we're always driven to find the best solution. Our projects are unique and interesting, and you'll need to bring a solution-focused, positive approach to each one to do your best. Surrounded by committed, loyal colleagues, if you can dare to bring your ingenuity and desire to make an impact, you'll be exposed to game-changing, diverse projects that truly allow you to play your part in the energy transition.

What we offer:

A key role in a dynamic, international working environment with a large degree of flexibility of work agreements

Competitive benefits, and great development opportunities - including private health insurance.

Additional Information

Relocation Assistance Provided:No

Related Jobs

View all jobs

Data Scientist

Data Scientist - Inside IR35 contract

Data Scientist - Graduate

Data Science Placement Programme

Data Science Placement Programme

Data Science Placement Programme

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Present Data Science Solutions to Non-Technical Audiences: A Public Speaking Guide for Job Seekers

The ability to communicate clearly is now just as important as knowing how to build a predictive model or fine-tune a neural network. In fact, many UK data science job interviews are now designed to test your ability to explain your work to non-technical audiences—not just your technical competence. Whether you’re applying for your first data science role or moving into a lead or consultancy position, this guide will show you how to structure your presentation, simplify technical content, design effective visuals, and confidently answer stakeholder questions.

Data Science Jobs UK 2025: 50 Companies Hiring Now

Bookmark this guide—refreshed every quarter—so you always know who’s really expanding their data‑science teams. Budgets for predictive analytics, GenAI pilots & real‑time decision engines keep climbing in 2025. The UK’s National AI Strategy, tax relief for R&D & a sharp rise in cloud adoption mean employers need applied scientists, ML engineers, experiment designers, causal‑inference specialists & analytics leaders—right now. Below you’ll find 50 organisations that have advertised UK‑based data‑science vacancies or announced head‑count growth during the past eight weeks. They’re grouped into five quick‑scan categories so you can jump straight to the kind of employer—& culture—that suits you. For every company you’ll see: Main UK hub Example live or recent vacancy Why it’s worth a look (tech stack, mission, culture) Search any employer on DataScience‑Jobs.co.uk to view current ads, or set up a free alert so fresh openings land straight in your inbox.

Return-to-Work Pathways: Relaunch Your Data Science Career with Returnships, Flexible & Hybrid Roles

Returning to work after an extended break can feel like stepping into a whole new world—especially in a dynamic field like data science. Whether you paused your career for parenting, caring responsibilities or another life chapter, the UK’s data science sector now offers a variety of return-to-work pathways. From structured returnships to flexible and hybrid roles, these programmes recognise the transferable skills and resilience you’ve gained and provide mentorship, upskilling and supportive networks to ease your transition back. In this guide, you’ll discover how to: Understand the current demand for data science talent in the UK Leverage your organisational, communication and analytical skills in data science roles Overcome common re-entry challenges with practical solutions Refresh your technical knowledge through targeted learning Access returnship and re-entry programmes tailored to data science Find roles that fit around family commitments—whether flexible, hybrid or full-time Balance your career relaunch with caring responsibilities Master applications, interviews and networking specific to data science Learn from inspiring returner success stories Get answers to common questions in our FAQ section Whether you aim to return as a data analyst, machine learning engineer, data visualisation specialist or data science manager, this article will map out the steps and resources you need to reignite your data science career.