Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Data Scientist (Commodities) | Top Systematic Fund

Selby Jennings
City of London
2 weeks ago
Create job alert
Overview

Data Scientist (Commodities) at a Top Systematic Fund. A leading global investment firm specialising in quantitative and systematic strategies seeks a talented Data Scientist (with good data engineering skills) to join a high-impact team at the intersection of research, trading, and engineering. The firm operates across all major liquid asset classes and is driven by a scientific, data-first approach to investing. The team collaborates with trading and research to harness data for alpha generation.

This is a unique opportunity to work in a cross-functional environment where data is central to investment decision-making. You\'ll be part of a specialist group that partners with trading and research teams to ensure data is efficiently sourced, transformed, and deployed across the investment process.

Key Responsibilities
  • Collaborate with trading and research teams to design and implement robust data pipelines tailored to investment strategies.
  • Work with data engineers to onboard and integrate new datasets, ensuring they are production-ready and aligned with business needs.
  • Develop and prototype tools to extract, clean, and aggregate data from diverse sources and formats.
  • Lead the end-to-end onboarding of new datasets, from discovery through to deployment.
  • Continuously improve data workflows by identifying bottlenecks and implementing scalable solutions.
  • Experiment with novel data acquisition and transformation techniques to expand the firm\'s data capabilities.
Ideal Candidate Profile
  • 3+ years of experience in a data science or data engineering role, ideally within a quantitative or financial setting.
  • Advanced degree (Master\'s or PhD) in a quantitative field such as Mathematics, Physics, Computer Science, or Engineering.
  • Strong Python programming skills, particularly with data-centric libraries like Pandas and NumPy.
  • Demonstrated interest in financial markets and the application of data to investment research.
  • Experience working with both traditional and alternative financial datasets.
  • Excellent communication skills and the ability to collaborate effectively with technical and non-technical stakeholders.
  • Comfortable working in a fast-paced, high-performance environment.
Seniority level
  • Entry level
Employment type
  • Full-time
Job function
  • Engineering and Information Technology
  • Investment Management

Notes: This description reflects the role and requirements; it omits extraneous job-boards-specific content and duplicate postings.


#J-18808-Ljbffr

Related Jobs

View all jobs

Data Scientist

Data Scientist

Data Scientist

Data Scientist

Data Scientist (Optimisation)

Data Scientist - Tax & Legal

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK data science hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise rigorous problem framing, high‑quality analytics & modelling, experiment/causality, production awareness (MLOps), governance/ethics, and measurable product or commercial impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for product/data scientists, applied ML scientists, decision scientists, econometricians, growth/marketing analysts, and ML‑adjacent data scientists supporting LLM/AI products. Who this is for: Product/decision/data scientists, applied ML scientists, econometrics & causal inference specialists, experimentation leads, analytics engineers crossing into DS, ML generalists with strong statistics, and data scientists collaborating with platform/MLOps teams in the UK.

Why Data Science Careers in the UK Are Becoming More Multidisciplinary

Data science once meant advanced statistics, machine learning models and coding in Python or R. In the UK today, it has become one of the most in-demand professions across sectors — from healthcare to finance, retail to government. But as the field matures, employers now expect more than technical modelling skills. Modern data science is multidisciplinary. It requires not just coding and algorithms, but also legal knowledge, ethical reasoning, psychological insight, linguistic clarity and human-centred design. Data scientists are expected to interpret, communicate and apply data responsibly, with awareness of law, human behaviour and accessibility. In this article, we’ll explore why data science careers in the UK are becoming more multidisciplinary, how these five disciplines intersect with data science, and what job-seekers & employers need to know to succeed in this transformed field.

Data Science Team Structures Explained: Who Does What in a Modern Data Science Department

Data science is one of the most in-demand, dynamic, and multidisciplinary areas in the UK tech and business landscape. Organisations from finance, retail, health, government, and beyond are using data to drive decisions, automate processes, personalise services, predict trends, detect fraud, and more. To do that well, companies don’t just need good data scientists; they need teams with clearly defined roles, responsibilities, workflows, collaboration, and governance. If you're aiming for a role in data science or recruiting for one, understanding the structure of a data science department—and who does what—can make all the difference. This article breaks down the key roles, how they interact across the lifecycle of a data science project, what skills and qualifications are typical in the UK, expected salary ranges, challenges, trends, and how to build or grow an effective team.