Data Scientist (Climate & Geospatial)

ZipRecruiter
London
1 week ago
Applications closed

Related Jobs

View all jobs

Data Scientist

Data Scientist - Remote

Data Scientist/Statistician

Data Scientist - Gen AI - Remote

Data Scientist - Gen AI - Remote

Data Scientist - Gen AI - Remote

Job Description

Data Scientist – Climate & Geospatial | Financial Services | London (Hybrid)

Location:London, UK

Employment Type:Full-time | Hybrid

Were looking for a talentedData Scientist / Senior Data Scienctistwith a passion for climate risk and geospatial data to join our clients growing analytics team in London. If youre excited about turning complex environmental datasets into actionable insights for the FS sector, we want to hear from you.

About the Role

In this role, youll work at the intersection ofclimate science, geospatial analysis, and insurance risk modeling, helping their clients better understand and manage the impact of physical climate risk. Youll be building scalable models and tools that directly support underwriting, portfolio risk management, and strategic planning in a changing climate.

What Youll Do

  • Analyse and model climate and natural catastrophe datasets (e.g. flood, wildfire, storm, sea-level rise)
  • Work with large-scalegeospatial data(satellite imagery, GIS layers, remote sensing)
  • Apply machine learning techniques to identify risk patterns and trends
  • Develop tools to visualise and interpret climate risk data for technical and non-technical audiences
  • Collaborate with insurance and reinsurance clients on climate-related risk assessments
  • Stay on top of the latest climate science and ESG regulations impacting the FS industry

What Were Looking For

  • Experience indata science, ideally in climate, geospatial, or catastrophe risk
  • Proficiency inPython,R, or similar, with experience using libraries E.G pandas, scikit-learn
  • Experience with climate models (e.g. CMIP6, ERA5) or catastrophe models is a strong plus
  • Degree in a quantitative field: data science, climatology, environmental science, geoinformatics, or similar

Why Join Us?

  • Be part of a mission-driven team tackling real-world climate challenges
  • Work with industry-leading datasets and tools
  • Flexible hybrid work model (central London office)
  • Competitive salary, bonus, and benefits package
  • Career growth opportunities in a rapidly expanding area of climate risk analytics

J-18808-Ljbffr

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for Data Science Jobs (With Real GitHub Examples)

Data science is at the forefront of innovation, enabling organisations to turn vast amounts of data into actionable insights. Whether it’s building predictive models, performing exploratory analyses, or designing end-to-end machine learning solutions, data scientists are in high demand across every sector. But how can you stand out in a crowded job market? Alongside a solid CV, a well-curated data science portfolio often makes the difference between getting an interview and getting overlooked. In this comprehensive guide, we’ll explore: Why a data science portfolio is essential for job seekers. Selecting projects that align with your target data science roles. Real GitHub examples showcasing best practices. Actionable project ideas you can build right now. Best ways to present your projects and ensure recruiters can find them easily. By the end, you’ll be equipped to craft a compelling portfolio that proves your skills in a tangible way. And when you’re ready for your next career move, remember to upload your CV on DataScience-Jobs.co.uk so that your newly showcased work can be discovered by employers looking for exactly what you have to offer.

Data Science Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Data science has become one of the most sought‑after fields in technology, leveraging mathematics, statistics, machine learning, and programming to derive valuable insights from data. Organisations across every sector—finance, healthcare, retail, government—rely on data scientists to build predictive models, understand patterns, and shape strategy with data‑driven decisions. If you’re gearing up for a data science interview, expect a well‑rounded evaluation. Beyond statistics and algorithms, many roles also require data wrangling, visualisation, software engineering, and communication skills. Interviewers want to see if you can slice and dice messy datasets, design experiments, and scale ML models to production. In this guide, we’ll explore 30 real coding & system‑design questions commonly posed in data science interviews. You’ll find challenges ranging from algorithmic coding and statistical puzzle‑solving to the architectural side of building data science platforms in real‑world settings. By practising with these questions, you’ll gain the confidence and clarity needed to stand out among competitive candidates. And if you’re actively seeking data science opportunities in the UK, be sure to visit www.datascience-jobs.co.uk. It’s a comprehensive hub featuring junior, mid‑level, and senior data science vacancies—spanning start‑ups to FTSE 100 companies. Let’s dive into what you need to know.

Negotiating Your Data Science Job Offer: Equity, Bonuses & Perks Explained

Data science has rapidly evolved from a niche specialty to a cornerstone of strategic decision-making in virtually every industry—from finance and healthcare to retail, entertainment, and AI research. As a mid‑senior data scientist, you’re not just running predictive models or generating dashboards; you’re shaping business strategy, product innovation, and customer experiences. This level of influence is why employers are increasingly offering compensation packages that go beyond a baseline salary. Yet, many professionals still tend to focus almost exclusively on base pay when negotiating a new role. This can be a costly oversight. Companies vying for data science talent—especially in the UK, where demand often outstrips supply—routinely offer equity, bonuses, flexible work options, and professional development funds in addition to salary. Recognising these opportunities and effectively negotiating them can have a substantial impact on your total earnings and long-term career satisfaction. This guide explores every facet of negotiating a data science job offer—from understanding equity structures and bonus schemes to weighing crucial perks like remote work and ongoing skill development. By the end, you’ll be well-equipped to secure a holistic package aligned with your market value, your life goals, and the tremendous impact you bring to any organisation.