Data Scientist, AI/ML, Associate

Cerberus Capital Management
London
1 month ago
Applications closed

Related Jobs

View all jobs

Lead Cyber Security Engineer

▷ [High Salary] Data Scientist at PwC (SponsorshipAvailable)...

Data Scientist

Data Scientist - (Senior AI/ML Engineer)

Senior AI/ML Data Scientist

Senior AI/ML Data Scientist

Data Scientist at Cerberus Capital Management


As aData Scientistin our AI team, you will contribute to the firm’s objectives by delivering rapid and scalable solutions that unlock value for Cerberus desks, portfolio companies, or other businesses/investments. You’ll do this by designing, implementing, and deploying machine learning systems that help our desks and portfolio companies make better business decisions and ultimately drive value. You may also participate in due diligence or pricing analyses of future investments, etc.


Responsibilities:


Build and deliver AI systems as an individual contributor and in teams.

  • Delivery focused:Help design solutions using a rigorous hypothesis-based approach, partner with cross-functional technical teams, and execute the development with a focus on impact.
  • Agile and pragmatic: Rapidly and iteratively deliver results in high-pressured projects, with skill and creativity to pivot quickly as needed to create the most value.
  • Contemporary and innovative approach:Develop novel solutions using modern platforms, languages, and tools; build IP into re-usable software packages.
  • Structured approach:Bring order to disparate requirements with high tolerance for ambiguity, very strong problem-solving ability, and excellent stakeholder engagement skills.


Communicate results in a compelling way to senior business executives.

  • Communicator:Break down complex concepts and problems into succinct components for a range of clients and colleagues at all levels of seniority.
  • Storytelling:Be a storyteller capable of delivering insights in a compelling manner.


Build a reputation as a trusted technologist and member of the team.

  • Technology polymath:experience with a wide range of technology and can learn and develop any solutions across the full data science lifecycle and application stack.
  • Test & learn mentality:Challenge our current best thinking, test ideas, and iterate rapidly.
  • Creativity:Invent new analyses and methods to solve key business problems.
  • Trusted voice:Establish reputation of delivering on commitments; build high-trust relationships.
  • Expertise:Develop deep subject matter expertise in valuable areas for the business.


Requirements:

  • 4+ years of experience
  • A degree in STEM field or equivalent and advanced degree.
  • Strong knowledge of statistics, machine learning, forecasting, NLP, computer vision, optimisation.
  • Python programmer with experience building data pipelines and statistical / machine learning models. Additional languages preferred, particularly HTML+CSS+JavaScript, or low-level compiled languages such as C/C++.
  • Proficiency in SQL. Ability to write efficient and robust queries.
  • Experience with DevOps process for model deployment and unit testing.
  • Proof of work in cloud environments, especially MS Azure, is a plus.
  • Proof of work in collaborative development environment (Git, Azure DevOps, JIRA).
  • Strong intellectual curiosity, mathematical problem solving, and effectiveness in a team.


About Us:

Established in 1992, Cerberus Capital Management, L.P., together with its affiliates, is one of the world's leading private investment firms. Through its team of investment and operations professionals, Cerberus specializes in providing both financial resources and operational expertise to help transform undervalued and underperforming companies into industry leaders for long-term success and value creation. Cerberus holds controlling or significant minority interests in companies around the world.


The Firm’s proprietary operations team,Cerberus Operations and Advisory Company, LLC (COAC), employs world-class operating executives to support Cerberus’ investment teams in the following areas: sourcing opportunities, conducting highly informed due diligence, taking interim management roles, monitoring the performance of investments and assisting in the planning and implementation of operational improvement initiatives at Cerberus’ portfolio companies.


Cerberus Technology Solutions is an operating company and subsidiary of Cerberus Capital Management focused exclusively on leveraging emerging technology, data, and advanced analytics to drive transformations. Our expert technologists work closely with Cerberus investment and operating professionals across our global businesses and platforms on a variety of operating initiatives targeted at improving systems and generating value from data.

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Top 10 Best UK Universities for Data Science Degrees (2025 Guide)

Discover ten of the strongest UK universities for Data Science degrees in 2025. Compare entry requirements, course content, research strength and industry links to choose the right programme for you. Data is the currency of the modern economy, and professionals who can wrangle, model and interpret vast datasets are in demand across every sector—from biotechnology and finance to sport and public policy. UK universities have been at the forefront of statistics, artificial intelligence and large-scale computing for decades, making the country a prime destination for aspiring data scientists. Below, we profile ten institutions whose undergraduate or postgraduate pathways excel in data science. Although league tables vary each year, these universities have a proven record of excellence in teaching, research and industry collaboration.

Veterans in Data Science: A Military‑to‑Civilian Pathway into Analytical Careers

Introduction The UK Government’s National AI Strategy projects that data‑driven innovation could add £630 billion to the economy by 2035. Employers across healthcare, defence, and fintech are scrambling for professionals who can turn raw data into actionable insights. In 2024 alone, job‑tracker Adzuna recorded a 42 % year‑on‑year rise in data‑science vacancies, with average advertised salaries surpassing £65k. For veterans, that talent drought is a golden opportunity. Whether you plotted artillery trajectories, decrypted enemy comms, or managed aircraft engine logs, you have already practised the fundamentals of hypothesis‑driven analysis and statistical rigour. This guide explains how to translate your military experience into civilian data‑science language, leverage Ministry of Defence (MoD) transition programmes, and land a rewarding role building predictive models that solve real‑world problems. Quick Win: Take a peek at our live Junior Data Scientist roles to see who’s hiring this week.

Quantum-Enhanced AI in Data Science: Embracing the Next Frontier

Data science has undergone a staggering transformation in the past decade, evolving from a niche academic discipline into a linchpin of modern industry. Across every sector—finance, healthcare, retail, manufacturing—data scientists have become indispensable, leveraging statistical methods and machine learning to turn raw information into actionable insights. Yet as datasets grow ever larger and machine learning models become more computationally expensive, there are genuine questions about how far current methods can be pushed. Enter quantum computing, a nascent but promising technology grounded in the counterintuitive principles of quantum mechanics. Often dismissed just a few years ago as purely experimental, quantum computing is quickly gaining traction as prototypes evolve into cloud-accessible machines. When paired with artificial intelligence—particularly in the realm of data science—the results could be game-changing. From faster model training and complex optimisation to entirely new forms of data analysis, quantum-enhanced AI stands poised to disrupt established practices and create new opportunities. In this article, we will: Explore how data science has reached its current limits in certain areas, and why classical hardware might no longer suffice. Provide an accessible overview of quantum computing concepts and how they differ from classical systems. Examine the potential of quantum-enhanced AI to solve key data science challenges, from data wrangling to advanced machine learning. Highlight real-world applications, emerging job roles, and the skills you need to thrive in this new landscape. Offer actionable steps for data professionals eager to stay ahead of the curve in a rapidly evolving field. Whether you’re a practising data scientist, a student weighing up your future specialisations, or an executive curious about the next technological leap, read on. The quantum era may be closer than you think, and it promises to radically transform the very fabric of data science.