Data Scientist

Bluetownonline
Manchester
3 months ago
Applications closed

Related Jobs

View all jobs

Data Scientist

Data Scientist

Data Scientist

Data Scientist

Data Scientist

Data Scientist

Job Title:Data Scientist

Location:Manchester

Salary:£46,148 to £60,809 DOE

Job type:Full Time, Permanent

Job Summary:

We are seeking a talented and highly motivated Data Scientist to join our team at the NHD. As a Data Scientist, you will play a key role in analysing and interpreting complex healthcare data to drive evidence-based decision-making and improve patient outcomes.

We have an exciting full-time opportunity available for an experience and promising Data Scientist at the National Haemophilia Database (NHD), to play a key role in analysing and interpreting complex healthcare data to drive evidence-based decision-making and improve patient outcomes.

The (NHD) is a register of people in the UK with all types of bleeding disorders started in 1969. Its purpose is to study the complete national cohort of patients with these conditions and improve the care of people with bleeding disorders. The database is held within the NHS and managed by the UK Haemophilia Centre Doctors’ Organisation (UKHCDO) which is an association of medical practitioners who work within the NHS Haemophilia Centre’s of England, Scotland, Northern Ireland, or Wales and have an interest in the care of people with Haemophilia or other inherited bleeding disorders.

NHD is at a transformation stage in its development and requires insight professionals to harness the wealth of data that is available to it. The NHD has the richest data store for bleeding disorders in the world and are investing heavily in the infrastructure required to enhance the processing, accessibility and surfacing of that data. What we now require is an individual that can harness the power of that data and convert it into insights and information that can make a real difference to the lives of people with bleeding disorders:

You would be working with the UKs best clinical, scientific, and statistical capabilities in this sector, whilst managing a small team. Would you enjoy being part of an NHD team that values, recognises, and celebrates staff members, their skills, and contributions? Could you play an invaluable part in a team to provide a high-level service to the NHS, work in partnership with the pharmaceutical sector who research and produce the current and future products for people with bleeding disorders, and ultimately, working with these partners, improve the lives of people with bleeding disorders? If yes, the National Haemophilia Database is the place for you.

Responsibilities:

Data Analysis: Perform data exploration, cleaning, and analysis on large healthcare datasets to derive meaningful insights and identify patterns. Predictive Modelling: Develop and implement predictive models to forecast patient outcomes, disease trends, and resource utilisation. Data Visualisation: Create visually compelling and easy-to-understand data visualisations to communicate findings and support data-driven decisions. Machine Learning: Utilise machine learning techniques to develop algorithms and models for various healthcare applications. Data Integration: Integrate disparate data sources to build comprehensive and holistic healthcare datasets for analysis. Collaborate with Healthcare Professionals: Work closely with clinicians and healthcare professionals to understand their data needs and provide data-driven solutions. Research Support: Assist in research projects by providing data expertise, statistical analysis, and interpretation of results. Continuous Improvement: Stay updated with the latest data science methodologies, tools, and technologies, and propose innovative approaches to enhance data analysis capabilities.

Requirements:

Education: Bachelor’s or Master’s degree in Data Science, Computer Science, Statistics, or a related field. Experience: Proven experience as a Data Scientist in the healthcare domain, preferably within the NHS or a healthcare setting. Technical Skills: Proficiency in programming languages such as Python, R, or SQL, and experience with data manipulation and analysis tools. Statistical Knowledge: Strong statistical and quantitative analysis skills, including experience with statistical modelling and hypothesis testing. Data Visualisation: Ability to create interactive and informative data visualisations using tools such as Tableau or Power BI. Machine Learning: Familiarity with machine learning algorithms and frameworks for classification, regression, and clustering tasks. Communication: Excellent communication and presentation skills to effectively convey complex data insights to non-technical stakeholders.

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Contract vs Permanent Data Science Jobs: Which Pays Better in 2025?

Data science sits at the intersection of statistics, machine learning, and domain expertise, driving crucial business decisions in almost every sector. As UK organisations leverage AI for predictive analytics, customer insights, and automation, data scientists have become some of the most in-demand professionals in the tech job market. By 2025, data scientists with expertise in deep learning, natural language processing (NLP), and MLOps are commanding top-tier compensation packages. However, deciding whether to become a day‑rate contractor, a fixed-term contract (FTC) employee, or a permanent member of an organisation can be challenging. Each path offers a unique blend of earning potential, career progression, and work–life balance. This guide will walk you through the UK data science job market in 2025, examine the differences between these three employment models, present sample take‑home pay scenarios, and offer strategic considerations to help you determine the best fit for your career.

Data Science Jobs for Non‑Technical Professionals: Where Do You Fit In?

Beyond Jupyter Notebooks Ask most people what a data‑science career looks like and they’ll picture Python wizards optimising XGBoost hyper‑parameters. The truth? Britain’s data‑driven firms need storytellers, strategists, ethicists and project leaders every bit as much as they need statisticians. The Open Data Institute’s UK Data Skills Gap 2024 places demand for non‑technical data talent at 42 % of all data‑science vacancies—roles focused on turning model outputs into business value and trustworthy decisions. This guide highlights the fastest‑growing non‑coding roles, the transferable skills many professionals already have, and a 90‑day action plan to land a data‑science job—no pandas required.

McKinsey & Company Data‑Science Jobs in 2025: Your Complete UK Guide to Turning Data into Impact

When CEOs need to unlock billion‑pound efficiencies or launch AI‑first products, they often call McKinsey & Company. What many graduates don’t realise is that behind every famous strategy deck sits a global network of data scientists, engineers and AI practitioners—unified under QuantumBlack, AI by McKinsey. From optimising Formula One pit stops to reducing NHS wait times, McKinsey’s analytics teams turn messy data into operational gold. With the launch of the McKinsey AI Studio in late 2024 and sustained demand for GenAI strategy, the firm is growing its UK analytics headcount faster than ever. The McKinsey careers portal lists 350+ open analytics roles worldwide, over 120 in the UK, spanning data science, machine‑learning engineering, data engineering, product management and AI consulting. Whether you love Python notebooks, Airflow DAGs, or white‑boarding an LLM governance roadmap for a FTSE 100 board, this guide details how to land a McKinsey data‑science job in 2025.