National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Data Scientist

XCM
Glasgow
2 weeks ago
Create job alert

Data Scientist

Full remote (based in the UK)

£30,000 depending on experience

Benefits package.


Primary Purpose


  • Development of XCM’s machine learning solutions
  • Delivery of client machine learning models.
  • Delivery of associated documentation and content on each project.
  • Communicating findings to internal and external stakeholders
  • Enhancing the client’s ROI with XCM through data driven solutions tailored to their specific business requirements.
  • Supporting BAU and planned analytics on client roadmaps when needed.
  • Supporting XCM’s analysts in statistical techniques.


Key Responsibilities


  • Working closely with the lead Data Scientist and Director of Analytics to develop a suite of machine learning solutions.
  • Involvement in the design, creation, productionising, testing, and maintenance of machine learning solutions.
  • Developing data models to serve the needs of each client by analysing and predicting customer interactions; including but not limited to, customer sales and their purchasing behaviour, web traffic and user behaviour, email performance, and social media trends.
  • Creation of technical and user documentation, marketing and other content associated with each project.
  • Produce recommendations on how to develop the XCM data modelling roadmap.
  • Confidently present analytics and recommendations both to colleagues and clients.
  • Execute larger, complex statistical projects to produce strategic actionable recommendations.
  • Lead the necessary actions off the back of analytical recommendations with other members of the analytic, campaign and client management team as required.
  • Respond to ad-hoc data requests as required.
  • Provide commitment to leadership and continuous improvement.
  • Delivery of your agreed objectives.
  • Management of your personal development programme.
  • Delivery of agreed standards & discipline.
  • Management of your quarterly appraisal process & documentation.



Experience & Qualities


  • Degree level qualification or equivalent in a mathematical or computing discipline.
  • 2+ years’ experience writing production level python code
  • Highly proficient with numpy, pandas, sklearn
  • Strong understanding of machine learning algorithms and workflow
  • Experience scoping and developing machine learning projects such as recommender systems
  • Experience with containerised deployment (docker)
  • Strong understanding of CI/CD processes and version control
  • Proficient in SQL analysis.
  • Fully literate in Microsoft Office package.



Attributes


  • Able to think abstractly and develop novel solutions to problems.
  • Able to quickly learn new programming languages, mathematical concepts, and software.
  • A desire to find the best solution to a challenge through collaborative working.
  • Genuinely interested in data science / machine learning / AI.
  • Strong communication skills.
  • Ability to explain and present modelling concepts to non-technical personnel.
  • Curious, proactive, organised, and methodical, with an attention to detail.
  • Ambitious, enthusiastic, self-motivated, and the confidence to lead projects.

Related Jobs

View all jobs

Data Scientist

Data Science Placement Programme

Data Science Placement Programme

Data Science Placement Programme

Data Science Placement Programme

Data Science Placement Programme

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Present Data Science Solutions to Non-Technical Audiences: A Public Speaking Guide for Job Seekers

The ability to communicate clearly is now just as important as knowing how to build a predictive model or fine-tune a neural network. In fact, many UK data science job interviews are now designed to test your ability to explain your work to non-technical audiences—not just your technical competence. Whether you’re applying for your first data science role or moving into a lead or consultancy position, this guide will show you how to structure your presentation, simplify technical content, design effective visuals, and confidently answer stakeholder questions.

Data Science Jobs UK 2025: 50 Companies Hiring Now

Bookmark this guide—refreshed every quarter—so you always know who’s really expanding their data‑science teams. Budgets for predictive analytics, GenAI pilots & real‑time decision engines keep climbing in 2025. The UK’s National AI Strategy, tax relief for R&D & a sharp rise in cloud adoption mean employers need applied scientists, ML engineers, experiment designers, causal‑inference specialists & analytics leaders—right now. Below you’ll find 50 organisations that have advertised UK‑based data‑science vacancies or announced head‑count growth during the past eight weeks. They’re grouped into five quick‑scan categories so you can jump straight to the kind of employer—& culture—that suits you. For every company you’ll see: Main UK hub Example live or recent vacancy Why it’s worth a look (tech stack, mission, culture) Search any employer on DataScience‑Jobs.co.uk to view current ads, or set up a free alert so fresh openings land straight in your inbox.

Return-to-Work Pathways: Relaunch Your Data Science Career with Returnships, Flexible & Hybrid Roles

Returning to work after an extended break can feel like stepping into a whole new world—especially in a dynamic field like data science. Whether you paused your career for parenting, caring responsibilities or another life chapter, the UK’s data science sector now offers a variety of return-to-work pathways. From structured returnships to flexible and hybrid roles, these programmes recognise the transferable skills and resilience you’ve gained and provide mentorship, upskilling and supportive networks to ease your transition back. In this guide, you’ll discover how to: Understand the current demand for data science talent in the UK Leverage your organisational, communication and analytical skills in data science roles Overcome common re-entry challenges with practical solutions Refresh your technical knowledge through targeted learning Access returnship and re-entry programmes tailored to data science Find roles that fit around family commitments—whether flexible, hybrid or full-time Balance your career relaunch with caring responsibilities Master applications, interviews and networking specific to data science Learn from inspiring returner success stories Get answers to common questions in our FAQ section Whether you aim to return as a data analyst, machine learning engineer, data visualisation specialist or data science manager, this article will map out the steps and resources you need to reignite your data science career.