Data Scientist

PwC
London
2 weeks ago
Create job alert

the role

The AI and Emerging Technologies team identifies and develops AI solutions that solve hard problems for PwC and for its clients. 

Our team works at the frontier of AI and ML in professional services. We work across multiple industries, including healthcare, financial services, and professional services.

We are looking for people to contribute to the development of AI tools and solutions, and help the business build capabilities on cutting-edge AI and NLP techniques.

We’re currently looking for a motivated, self-starter individual, comfortable with ambiguity, and willing to work in a cross-functional environment, with 2+ years of experience in data science, to join us across our Manchester, Leeds, Birmingham, and London offices.

What your days will look like:

Solution Development: Contribute to designing, developing and scaling AI and NLP solutions addressing specific business problems or opportunities. This involves understanding business requirements, assessing feasibility, selecting appropriate techniques and technologies, and creating scalable and efficient solutions.

AI Strategy: Contribute to the organisation's AI strategy by identifying opportunities for leveraging AI technologies to drive innovation, improve business processes, and enhance decision-making. This includes staying updated on AI trends and advancements, conducting market research, and providing recommendations on AI adoption and implementation. 

Model Development and Evaluation: Contribute to the development, deployment, and evaluation of AI models and to the deployment and evaluation of off the shelf AI models. This includes selecting appropriate algorithms, optimising model performance, conducting experiments and testing, and ensuring that the models meet the desired accuracy, reliability, and performance criteria. 

Collaboration and Stakeholder Management: Help the wider team collaborating with business stakeholders, technology teams, and other relevant groups to understand their needs, gather requirements, and align AI solutions with organisational goals. 

Prototyping, developing, and deploying machine learning applications into production

Contributing to our machine learning enabled, business-facing applications

Contributing effective, high quality code to our codebase

Model validation and model testing of production models

Presenting findings to senior internal and external stakeholders in written reports and presentations.

This role is for you if:

Python for API and Model development (Machine learning frameworks and tooling e.g. Sklearn) and (Deep learning frameworks such as Pytorch and Tensorflow)

Understanding of machine learning techniques

Experience with data manipulation libraries (e.g. Pandas, Spark, SQL)

Problem solving skills

Git for version control

Cloud experience (we use Azure/GCP/AWS)

Skills we’d also like to hear about:

Evidence of modelling experience applied to industry relevant use cases

Familiarity with working in an MLOps environment

Familiarity with simulation techniques

Familiarity with optimisation techniques

What you'll receive from us:

No matter where you may be in your career or personal life, our are designed to add value and support, recognising and rewarding you fairly for your contributions. 

We offer a range of benefits including empowered flexibility and a working week split between office, home and client site; private medical cover and 24/7 access to a qualified virtual GP; six volunteering days a year and much more.


Related Jobs

View all jobs

Data Scientist

Data Scientist

Data Scientist/Machine Learning Engineer - RNA Design

Data Scientist | London | AI-Powered SaaS Company

Data Scientist - active NPPV3 required

Data Scientist

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Quantum-Enhanced AI in Data Science: Embracing the Next Frontier

Data science has undergone a staggering transformation in the past decade, evolving from a niche academic discipline into a linchpin of modern industry. Across every sector—finance, healthcare, retail, manufacturing—data scientists have become indispensable, leveraging statistical methods and machine learning to turn raw information into actionable insights. Yet as datasets grow ever larger and machine learning models become more computationally expensive, there are genuine questions about how far current methods can be pushed. Enter quantum computing, a nascent but promising technology grounded in the counterintuitive principles of quantum mechanics. Often dismissed just a few years ago as purely experimental, quantum computing is quickly gaining traction as prototypes evolve into cloud-accessible machines. When paired with artificial intelligence—particularly in the realm of data science—the results could be game-changing. From faster model training and complex optimisation to entirely new forms of data analysis, quantum-enhanced AI stands poised to disrupt established practices and create new opportunities. In this article, we will: Explore how data science has reached its current limits in certain areas, and why classical hardware might no longer suffice. Provide an accessible overview of quantum computing concepts and how they differ from classical systems. Examine the potential of quantum-enhanced AI to solve key data science challenges, from data wrangling to advanced machine learning. Highlight real-world applications, emerging job roles, and the skills you need to thrive in this new landscape. Offer actionable steps for data professionals eager to stay ahead of the curve in a rapidly evolving field. Whether you’re a practising data scientist, a student weighing up your future specialisations, or an executive curious about the next technological leap, read on. The quantum era may be closer than you think, and it promises to radically transform the very fabric of data science.

Data Science Jobs at Newly Funded UK Start-ups: Q3 2025 Investment Tracker

Data science has become an indispensable cornerstone of modern business, driving decisions across finance, healthcare, e-commerce, manufacturing, and beyond. As organisations scramble to capitalise on the insights their data can offer, data scientists and machine learning (ML) experts find themselves in ever-higher demand. In the UK, which has cultivated a robust ecosystem of tech innovation and academic excellence, data-driven start-ups continue to blossom—fuelled by venture capital, government grants, and a vibrant talent pool. In this Q3 2025 Investment Tracker, we delve into the newly funded UK start-ups making waves in data science. Beyond celebrating their funding milestones, we’ll explore the job opportunities these investments have created for aspiring and seasoned data scientists alike. Whether you’re interested in advanced analytics, NLP (Natural Language Processing), computer vision, or MLOps, these start-ups might just offer the career leap you’ve been waiting for.

Portfolio Projects That Get You Hired for Data Science Jobs (With Real GitHub Examples)

Data science is at the forefront of innovation, enabling organisations to turn vast amounts of data into actionable insights. Whether it’s building predictive models, performing exploratory analyses, or designing end-to-end machine learning solutions, data scientists are in high demand across every sector. But how can you stand out in a crowded job market? Alongside a solid CV, a well-curated data science portfolio often makes the difference between getting an interview and getting overlooked. In this comprehensive guide, we’ll explore: Why a data science portfolio is essential for job seekers. Selecting projects that align with your target data science roles. Real GitHub examples showcasing best practices. Actionable project ideas you can build right now. Best ways to present your projects and ensure recruiters can find them easily. By the end, you’ll be equipped to craft a compelling portfolio that proves your skills in a tangible way. And when you’re ready for your next career move, remember to upload your CV on DataScience-Jobs.co.uk so that your newly showcased work can be discovered by employers looking for exactly what you have to offer.