Data Science Subject Matter Expert - AI Evaluation (UK-Remote)

Braintrust
Edinburgh
2 days ago
Create job alert
Data Science Subject Matter Expert - AI Evaluation (UK-Remote)

16 hours ago Be among the first 25 applicants


This range is provided by Braintrust. Your actual pay will be based on your skills and experience — talk with your recruiter to learn more.


Base pay range

$75.00/hr - $90.00/hr


Job Description:


Seeking multiple Data Science Subject Matter Experts to help design, run, and optimize data collection and evaluation workflows for GenAI research.


You’ll translate high-level research needs into scalable processes, produce and curate challenging domain problems, and ensure factual, bias-aware, high-quality datasets for LLM training.



  • To Note: This is for an immediate project need. Project is approved for 3-months initially, with possibility to extend based on project/client demands.
  • To Note: Hourly rate range (75 - 90) is in USD per hour

Responsibilities:



  • Partner with GenAI researchers/engineers to capture data needs and success criteria.
  • Expand high-level requirements into clear, executable workflows for larger teams.
  • Execute collection/evaluation workflows rapidly with minimal supervision.
  • Innovate on workflows to maximize throughput and quality.
  • Collaborate cross-functionally to maintain quality at scale.
  • Conduct in-depth LLM-assisted research; gather reliable, up-to-date info.
  • Craft original, high-quality content and hard problems for LLM eval/train.
  • Perform rigorous fact-checking (precision/recall) to prevent misinformation.

Requirements:



  • Education: Master’s with distinction or PhD in Data Science; top-tier institution preferred. Significant domain experience considered.
  • Detail orientation; precise data presentation; thorough proofreading.
  • Communication: articulate complex info; strong collaboration.
  • Understanding of AI/LLMs, their capabilities/limits.
  • Prompt engineering and familiarity with AI writing tools.
  • Ethical AI awareness and data literacy (collection, cleaning, transformation).
  • Thrives in fast-paced, minimally supervised environments.

Seniority level
  • Entry level

Employment type
  • Full-time

Job function
  • Engineering, Information Technology, and Science

Industries
  • Technology, Information and Internet, Data Infrastructure and Analytics, and IT System Data Services


#J-18808-Ljbffr

Related Jobs

View all jobs

Online Data Analyst - Lithuanian Speakers

SAP Master Data Governance (MDG) Expert

SAP Master Data Governance (MDG) Expert

SAP Master Data Governance (MDG) Expert

SAP Master Data Governance (MDG) Expert

Senior Data Scientist SME & AI Architect

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Neurodiversity in Data Science Careers: Turning Different Thinking into a Superpower

Data science is all about turning messy, real-world information into decisions, products & insights. It sits at the crossroads of maths, coding, business & communication – which means it needs people who see patterns, ask unusual questions & challenge assumptions. That makes data science a natural fit for many neurodivergent people, including those with ADHD, autism & dyslexia. If you’re neurodivergent & thinking about a data science career, you might have heard comments like “you’re too distracted for complex analysis”, “too literal for stakeholder work” or “too disorganised for large projects”. In reality, the same traits that can make traditional environments difficult often line up beautifully with data science work. This guide is written for data science job seekers in the UK. We’ll explore: What neurodiversity means in a data science context How ADHD, autism & dyslexia strengths map to common data science roles Practical workplace adjustments you can request under UK law How to talk about your neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in data science – & how to turn “different thinking” into a real career advantage.

Data Science Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK data science hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise rigorous problem framing, high‑quality analytics & modelling, experiment/causality, production awareness (MLOps), governance/ethics, and measurable product or commercial impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for product/data scientists, applied ML scientists, decision scientists, econometricians, growth/marketing analysts, and ML‑adjacent data scientists supporting LLM/AI products. Who this is for: Product/decision/data scientists, applied ML scientists, econometrics & causal inference specialists, experimentation leads, analytics engineers crossing into DS, ML generalists with strong statistics, and data scientists collaborating with platform/MLOps teams in the UK.

Why Data Science Careers in the UK Are Becoming More Multidisciplinary

Data science once meant advanced statistics, machine learning models and coding in Python or R. In the UK today, it has become one of the most in-demand professions across sectors — from healthcare to finance, retail to government. But as the field matures, employers now expect more than technical modelling skills. Modern data science is multidisciplinary. It requires not just coding and algorithms, but also legal knowledge, ethical reasoning, psychological insight, linguistic clarity and human-centred design. Data scientists are expected to interpret, communicate and apply data responsibly, with awareness of law, human behaviour and accessibility. In this article, we’ll explore why data science careers in the UK are becoming more multidisciplinary, how these five disciplines intersect with data science, and what job-seekers & employers need to know to succeed in this transformed field.